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ABSTRACT
Background and purpose  Early haematoma expansion 
is determinative in predicting outcome of intracerebral 
haemorrhage (ICH) patients. The aims of this study are 
to develop a novel prediction model for haematoma 
expansion by applying deep learning model and validate 
its prediction accuracy.
Methods  Data of this study were obtained from a 
prospectively enrolled cohort of patients with primary 
supratentorial ICH from our centre. We developed a 
deep learning model to predict haematoma expansion 
and compared its performance with conventional 
non-contrast CT (NCCT) markers. To evaluate the 
predictability of this model, it was also compared with a 
logistic regression model based on haematoma volume 
or the BAT score.
Results  A total of 266 patients were finally included 
for analysis, and 74 (27.8%) of them experienced 
early haematoma expansion. The deep learning model 
exhibited highest C statistic as 0.80, compared with 
0.64, 0.65, 0.51, 0.58 and 0.55 for hypodensities, black 
hole sign, blend sign, fluid level and irregular shape, 
respectively. While the C statistics for swirl sign (0.70; 
p=0.211) and heterogenous density (0.70; p=0.141) 
were not significantly higher than that of the deep 
learning model. Moreover, the predictive value for the 
deep learning model was significantly superior to that of 
the logistic model of haematoma volume (0.62; p=0.042) 
and the BAT score (0.65; p=0.042).
Conclusions  Compared with the conventional NCCT 
markers and BAT predictive model, the deep learning 
algorithm showed superiority for predicting early 
haematoma expansion in ICH patients.

INTRODUCTION
Intracerebral haemorrhage (ICH) remains a 
devastating disease with high mortality and 
morbidity.1 Early expansion of haematoma 
is a determinative factor in predicting 
outcome.2 A wealth of studies has been 
carried out to seek an advanced way of 
early identifying patients with haematoma 
expansion. Spot sign was a well-established 
imaging marker associated with haematoma 
expansion, based on CT angiography 
(CTA).3–5 However, in large-scaled clinical 
trials, the majority of ICH patients did not 

undergo CTA when admitted.6 Imaging 
signs more feasible based on non-contrast 
CT (NCCT) included black hole sign, swirl 
sign, island sign, blend sign and so on.7–10 
However, these signs usually bared a poor 
sensitivity since their probability of occur-
rence is relatively low.11 12 Recently, multi-
itemed scores for predicting haematoma 
expansion expansion have been proposed 
in order to increase prediction efficacy, such 
as the BRAIN (B for baseline ICH volume, 
R for recurrent ICH, A for anticoagulation 
with warfarin, I for intraventricular haem-
orrhage and N for numbers of hours from 
onset to CT), HEAVN (H for heterogenity, 
E for peripheral edema, A for anticoagula-
tion use, V for volume>30ml on initial CT, 
and N for Niveau formation), BAT (B for 
blend sign, A for hypodensity presence, and 
T for time from onset to NCCT). Yet none of 
these scores exhibits a C statistic >0.8, which 
means unsatisfactory prediction value.12

Nowadays, deep learning is recognised 
as the most effective machine learning 
algorithm and is cutting a striking figure 
in processing multi-categorical data. Some 
predicting models based on deep learning 
have been successfully used to predict 
clinical outcome. Convolutional neural 
networks (CNN) is a deep learning statistical 
method commonly used in image recog-
nition.13 U-net is a network and training 
strategy which relies on strong usage of 
data augmentation, and thereby requires 
fewer data and shorter time to produce 
an ideal method.14 We hypothesised that 
CNN-derived U-net-supported modelling 
based on topological and morphological 
imaging features on NCCT might provide 
an advanced predicting model which retains 
both better prediction efficacy and conve-
nient clinical application. For this purpose, 
a novel prediction model for ICH patients 
with early haematoma expansion is devel-
oped and tested compared with NCCT signs, 
as well as haematoma volume and BAT score.
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METHODS
The data that support the findings of the study are 
available from the corresponding author on reason-
able request. Retrospective analysis of a prospectively 
and consecutively collected cohort of spontaneous ICH 
patients in The Second Affiliated Hospital of Zhejiang 
University between February 2012 to October 2019. 
Patients were enrolled if they: (1) were over 18 years 
old, (2) were obtained baseline CT imaging within 
8 hours from onset and (3) obtained follow-up CT scan 
after 20–24 hours after baseline. We excluded patients 
with infratentorial haematoma, ventricular haemor-
rhage only, critical deterioration or surgical operation 
before the follow-up CT imaging or poor image quality. 
From the prospectively longitudinal cohort, patients 
between February 2012 and August 2018 were selected 
for training dataset and those between September 2018 
and October 2019 were selected as testing dataset. 
Early haematoma expansion was defined as an increase 
of >6 mL absolute volume or 33% relative volume of 
haematoma in the follow-up CT compared with initial 
CT.

Labelling and calculating the volume of haematoma
The baseline CT images for this study were obtained 
with four different CT scanners. The acquisition param-
eters were described in online supplemental table 1. 
Manual segmentations for haematoma were performed 
on the CT scans by a single radiologist with more than 
10 years of experience, and 20 randomly selected 
cases were re-evaluated after a minimal interval of 7 
days by another skilled radiologist to assess inter-rater 

reliability. The inter-rater agreement for the segmen-
tation of haematoma was 0.978 for semi-automated 
segmentation method. Based on the binary label map, 
the haematoma volume was then calculated.

Assessment of the NCCT markers and the BAT score
The NCCT signs were evaluated by two authors, each 
with >10 years of experience. The inter-rater reliability 
was assessed using the whole dataset with a dichotomy 
(κ=0.886, 0.906, 0.848, 0.951, 0.892, 0.859, 0.932 for 
hypodensities, black hole sign, swirl sign, blend sign, 
fluid level, irregular shape, heterogeneous density, 
respectively). In addition, disagreements were settled by 
consensus between the two authors. The BAT score was 
based on the assessment of NCCT markers. The process 
of assessing the NCCT markers and the BAT score was 
shown in online supplementa tables 2 and 3.

Data preprocessing and augmentation
The baseline CT images were skull stripped and then 
normalised for signal intensity. The images were all resa-
mpled to a uniform field of view of 112×112×160 mm 
and matrix size of 256×256×32. Considering the limited 
data size, data augmentation was performed via three-
dimensional rotation, translation and scaling. Thereby 
the size of original dataset was augmented 10-fold (see 
online supplemental file.

Training of the deep learning model
A two-output deep learning model was designed to 
segment the haematoma to acquire high-level imaging 
features and predict early haematoma expansion. 

Figure 1  The concept of the model in this study: (1) the model had a single input (CT imaging data) and two outputs for 
segmentation and prediction; (2) based on the U architecture, the high-level image information derived from the bridge layer of 
U were treated as biomarkers for haematoma expansion prediction.
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U-net provides technical support for basic architec-
ture design for segmentation. The most aggregated 
contextual information was deposited in the middle 
layer of the model (the deepest convolutional layer of 
the U) and extracted as the high-level imaging feature 
used for a binary classification for haematoma expan-
sion (figure  1). Detail of the model architecture is 
shown in online supplemental figure 1. For training, 
fivefold cross-validation was used for adjusting hyper-
parameters. These processes only involved CT data. No 
clinical information was applied as input. See online 
supplemental file.

Logistic regression models based on the haematoma volume 
and the BAT score
To compare the performance of the deep learning 
model, univariate logistic regression models were 
respectively developed based on the haematoma volume 
and the BAT score from the training dataset.

Evaluation of the models
Each model was applied in the testing dataset. The sensi-
tivity, specificity, likelihood ratio and receiver operator 
characteristic (ROC) area under the curve (AUC) were 
calculated for each model and NCCT markers. Dice coef-
ficient was calculated to evaluate the performance of 
segmentation.

Statistical analysis
Continuous variables are expressed as the mean with the 
CI of the mean or SD, or as the median with IQR. Contin-
uous variables were compared using Mann-Whitney U 
test and Student’s t-test as appropriate, and categorical 
variables were compared using Pearson’s χ2 test. AUC of 
deep learning model was compared with that of the other 
models and NCCT signs using Delong test. The statistical 
analysis was performed with R statistical software (V.4.0.1).

RESULTS
A total of 317 patients fulfilled our inclusion criteria. 
Fifty-one patients were excluded due to the following 
reasons, infratentorial haematoma (n=29), only 
ventricular haemorrhage (n=3), died or had surgical 
operation before follow-up CT (n=11), or with poor 
image quality (n=8). A total of 266 patients were included 
for analysis, and divided into training dataset (n=189) and 
testing dataset (n=77) according to the admission date 
(figure 2). Baseline patient characteristics were compared 
between the training and testing dataset in table 1.

Figure 2  Flow chart illustrating patient selection for training 
dataset and testing dataset.

Table 1  Patientcharacteristics grouped by training and 
testing datasets

Variable name (and 
type)

Training 
dataset

Testing 
dataset P value*

Sample size (n) 189 77

Age, years, mean±SD 62.2±13.4 63.3±12.0 0.521

Sex, male, n (%) 132 (69.8) 54 (70.1) 0.963

Hypertension, n (%) 140 (74.9) 62 (80.5) 0.325

Diabetes mellitus, n (%) 19 (10.2) 17 (22.1) 0.010

Prestroke, n (%) 13 (6.9) 11 (14.3) 0.056

Antiplatelet history, n 
(%)

13 (6.9) 7 (9.1) 0.535

Anticoagulation history, 
n

2† 0 N/A

Time to baseline CT, 
hours, mean±SD

3.4±2.0 3.9±2.2 0.096

Baseline NIHSS score, 
median (IQR)

9 (5–12) 8 (4–14) 0.718

Baseline haematoma 
volume, mL, mean±SD

17.4±15.3 17.8±18.8 0.850

Intraventricular 
haemorrhage, n (%)

70 (37.0) 31 (40.3) 0.623

NCCT markers

 � Hypodensities 132 (69.8) 44 (57.1) 0.047

 � Black hole sign 28 (14.8) 12 (15.6) 0.873

 � Swirl sign 116 (61.4) 44 (57.1) 0.523

 � Blend sign 24 (12.7) 13 (16.9) 0.371

 � Fluid level 13 (6.9) 9 (11.7) 0.196

 � Irregular shape 143 (75.7) 50 (64.9) 0.075

 � Heterogeneous 
density

100 (52.9) 34 (44.2) 0.195

BAT score, median 
(IQR)

2 (2–4) 2 (0–3) 0.065

Haematoma expansion, 
n (%)

52 (27.5) 22 (28.6) 0.861

*Continuous variables were compared using Mann-Whitney U test 
and Student’s t-test as appropriate and categorical variables were 
compared using Pearson’s χ2 test.
†Two patients with warfarin history for atrial fibrillation had no 
haematoma expansion.
NCCT, non-contrast CT; NIHSS, National Institute of Health Stroke 
Scale.
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The Dice coefficient of the CNN model was 0.96±0.01 
with the training dataset and 0.87±0.15 with the testing 
dataset. Representative images are shown in figure 3.

Of the 266 patients, 74 (27.8%) patients had haematoma 
expansion. Patients of training dataset and testing dataset 
were not different in the haematoma volume (p=0.850) 
and the BAT score (p=0.065). The sensitivity, specificity, 
likelihood ratio and AUCs of the NCCT markers and the 
three models were shown in table 2, and the ROC curves 
were shown in online supplemental figure 2.

For the NCCT markers, the CNN model exhibited 
highest AUC: 0.80 (95% CI 0.70 to 0.90) compared with 

0.64 (95% CI 0.53 to 0.75), 0.65 (95% CI 0.54 to 0.75), 
0.51 (95% CI 0.41 to 0.61), 0.58 (95% CI 0.48 to 0.67) 
and 0.55 (95% CI 0.44 to 0.67) for hypodensities, black 
hole sign, blend sign, fluid level and irregular shape, 
while the AUCs of swirl sign (0.70 (95% CI 0.61 to 0.80); 
p=0.211) and heterogenous density (0.70 (95% CI 0.59 
to 0.81); p=0.141) were not significantly higher than that 
of the deep learning model. For the three models, the 
CNN model superior predictive accuracy than the haema-
toma volume (AUC 0.62 (95% CI 0.46 to 0.78); p=0.042) 
and the BAT score (0.65 (95% CI 0.53 to 0.78); p=0.042) 
according logistic regression models. In addition, the 
CNN model represented the lowest negative likelihood 
ratio (0.06 (95% CI 0.02 to 0.24)).

DISCUSSION
In this study, we developed a CNN-derived predictive 
model based on topological and morphological imaging 
features on NCCT to predict early haematoma expansion 
in ICH patients. According to the sensitivity, specificity, 
positive likelihood ratio, negative likelihood ratio and 
C statistics, comparing with other existing prediction 
models or NCCT markers, CNN model exhibited supe-
rior prediction efficacy.

Most recently, several NCCT markers were proposed for 
predicting early haematoma expansion in ICH patients, 
including blend sign, swirl sign and black hole sign.7 8 10 

Figure 3  An illustrative case of the segmentation result: the 
haematoma segmented by the convolutional neural networks 
(CNN) model was in green, and the segmentation in the 
manual method was in red.

Table 2  Scores for models and NCCT markers of testing dataset

Sensitivity
 

Specificity

Positive 
likelihood 
ratio*

Negative 
likelihood 
ratio* AUC P value†

Hypodensities 0.77
(0.54 to 0.91)

0.51
(0.37 to 0.64)

0.63
(0.40 to 0.98)

0.18
(0.08 to 0.40)

0.64
(0.53 to 0.75)

0.026

Black hole sign 0.36
(0.18 to 0.59)

0.93
(0.82 to 0.98)

2.00
(0.82 to 4.89)

0.27
(0.17 to 0.44)

0.65
(0.54 to 0.75)

0.006

Swirl sign 0.86
(0.64 to 0.96)

0.54
(0.41 to 0.68)

0.76
(0.50 to 1.16)

0.1
(0.03 to 0.30)

0.70
(0.61 to 0.80)

0.211

Blend sign 0.18
(0.06 to 0.41)

0.84
(0.71 to 0.92)

0.44
(0.18 to 1.08)

0.39
(0.26 to 0.59)

0.51
(0.41 to 0.61)

<0.001

Fluid level 0.23
(0.09 to 0.46)

0.93
(0.82 to 0.98)

1.25
(0.49 to 3.19)

0.33
(0.22 to 0.51)

0.58
(0.48 to 0.67)

0.002

Irregular shape 0.73
(0.50 to 0.88)

0.38
(0.261 to 0.52)

0.47
(0.30 to 0.74)

0.29
(0.14 to 0.59)

0.55
(0.44 to 0.67)

0.002

Heterogeneous density 0.73
(0.50 to 0.88)

0.67
(0.53 to 0.79)

0.89
(0.55 to 1.43)

0.16
(0.08 to 0.34)

0.70
(0.59 to 0.81)

0.141

Haematoma Volume 0.50
(0.29to 0.71)

0.84
(0.71 to 0.92)

1.22
(0.65 to 2.29)

0.24
(0.14 to 0.41)

0.62
(0.46 to 0.78)

0.042

BAT score 0.36
(0.18to 0.59)

0.76
(0.62 to 0.86)

0.61
(0.32 to 1.17)

0.33
(0.21 to 0.53)

0.65
(0.53 to 0.78)

0.042

CNN 0.91
(0.69to 0.98)

0.58
(0.44 to 0.71)

0.87
(0.57 to 1.33)

0.06
(0.02 to 0.24)

0.80
(0.70 to 0.90)

N/A

*Positive likelihood ratio and negative likelihood ratio were weighted by prevalence.
†AUC of CNN model was compared with AUC of the other models and NCCT signs using Delong test.
AUC, receiver operator characteristic area under the curve; CNN, convolutional neural network; N/A, not applicable; NCCT, non-contrast CT.
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However, most of the NCCT markers were with relatively 
low sensitivity and low incidence.11 12 To improve the 
performance of NCCT markers, Morotti et al15 reported 
the BAT score based on the NCCT signs, and shown that 
their BAT score had a C-statistic of 0.65–0.70 for valida-
tion cohorts, which was in accordance with results of this 
study. Size of their dataset was sufficiently large, whereas, 
the comparison between the BAT score and the conven-
tional NCCT markers was not performed. In addition, 
correlations between the initial haematoma volume 
and early haematoma expansion have been reported.16 
Therefore, in the present study, the logistic model only 
based on haematoma volume was built and its discrimina-
tive ability was similar to the BAT score.

Because of the excellent performance of the artificial 
intelligence technology in clinical, Liu et al17 proposed a 
support vector machine (SVM) to predict early haema-
toma growth with an external validation AUC of 0.85. 
However, in this model, not only the NCCT markers but 
a bundle of clinical information was required as the input 
of SVM. By Only the initial NCCT images can be more 
convenient in clinical practice, while no previous study 
applied the deep learning technology in determining 
haematoma expansion. Therefore, we first developed 
a two-output CNN model merely based on the baseline 
NCCT image, and its performance was superior to the 
conventional NCCT markers and the BAT score.

There are several limitations in our study. First, data 
applied was from a single centre, though collected 
prospectively. Second, the test data set was also from our 
centre, the extrapolation of the model is thus limited 
due to the lack of external testifying from other centres. 
Thus, we should be cautious when the model is applied 
to other cohort with different clinical characteristics, and 
more external validation is needed. However, we divided 
the data into training and testing dataset according to 
the admission time of patients, to distinguish the training 
dataset from testing dataset in a longitudinal data, 
comparable with a trained model testifying by another 
prospective cohort. Third, since the data were collected 
from a single centre, only the patients from neighbouring 
regions can be sent to this centre in a super-early time 
after ICH ictus, thus the cohort may not represent the 
general ICH patients. Moreover, as an artificial intelli-
gence technology, deep learning requires strong support 
from hardware and software, thus the application of this 
method for the rural hospitals may be limited.

In conclusion, our study developed an advanced 
prediction model using deep learning to predict early 
haematoma expansion in ICH patients. This CNN model 
exhibited a superior predicting ability compared with 
other prediction models aforementioned, therefore 
provides a more accurate method for predicting early 
haematoma expansion.
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