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Abstract
Cerebral cavernous malformations (CCMs) are vascular 
lesions characterised by enlarged and irregular structure 
of small blood vessels in the brain, which can result 
in increased risk of stroke, focal neurological defects 
and seizures. Three different genes, CCM1/Krev/Rap1 
Interacting Trapped 1, CCM2/MGC4607 and CCM3/
PDCD10, are associated with the CCMs’ progression, 
and mutations in one of three CCM genes cause CCM 
disease. These three CCM proteins have similar function 
in maintaining the normal structure of small blood vessels. 
However, CCM3 mutation results in a more severe form 
of the disease which may suggest that CCM3 has unique 
biological function in the vasculature. The current review 
focuses on the signalling pathways mediated by CCM3 in 
regulating endothelial cell junction, proliferation, migration 
and permeability. These findings may offer potential 
therapeutic strategies for the treatment of CCMs.

Introduction
Cerebral vascular malformations affect 
0.1%–4% of the general population and fall 
into four categories: arteriovenous malforma-
tions, venous malformations, capillary telangi-
ectases and cerebral cavernous malformations 
(CCMs). CCMs consist of clusters of enlarged 
endothelial channels (‘caverns’) that are 
arranged back-to-back to form densely packed 
sinusoids with little or no intervening brain 
parenchyma.1–5 These lesions lack smooth 
muscle/pericyte and elastic tissue, and lack 
sub-endothelial support and an intact basal 
lamina, so the vessel walls are thin and prone to 
leakage. Ultra-structural analysis has revealed 
decreased numbers of pericytes, endothe-
lial detachment from the basal lamina and 
ruptures in the luminal endothelium prob-
ably due to reduced/damaged intercellular 
junctions.6 CCMs are primarily found within 
the neurovasculature of the central nervous 
system (CNS, ie, brain, spinal cord, retina), 
where they result in increased risk for stroke, 
seizures and focal neurological deficits.3–5 
Currently, the only treatment for CCM is 
surgical resection. CCMs may be familial or 
sporadic. Familial cases are caused by muta-
tions in one of three CCM genes: CCM1 (also 
known as Krev/Rap1 Interacting Trapped 1—
KRIT1),7 CCM2 (also known as malcavernin 
or osmosensing scaffold for mitogen-activated 

protein kinase kinase-3-osm)8 and CCM3 
(also known as programmed cell death 
10-PDCD10).9 These three CCM proteins 
can be found in the same complex within 
the cell and recent studies suggest that all 
CCM proteins regulate EndMT (endotheli-
al-to-mesenchymal transition), which contrib-
utes to the onset and progression of CCM.10–15 
However, CCM3 might also act separately 
from CCM1 and CCM2, as its mutation in 
humans often results in a more severe form 
of the disease,16 17 and CCM3 knockout mice 
show severe phenotypes with yet-to-be defined 
mechanisms.10–14 

Bergametti et al first identified PDCD10 
as the third CCM gene, which is located on 
3q25.2–27.9 After the relationship between 
PDCD10 and CCMs was elucidated, a variety 
of biological functions of this protein related 
to CCMs have been reported. This review 
focuses on the role of CCM3 in regulating cell 
junction, maintaining normal structure and 
function of vascular endothelial cells, and 
angiogenesis, which all can be involved in the 
progression of CCMs.

CCM3 and the cerebrovascular disease
The role of CCM3 in cell junction
The normal cell junction of endothelial cells 
is important to maintain the normal struc-
ture and function of blood vessels, which 
are often disrupted in CCM lesions. Cell-cell 
junctions especially tight junctions are essen-
tial to prevent blood-borne compounds from 
leaking to brain parenchyma, which further 
leads to inflammatory responses, endothe-
lial injury and lesion progression.18 19 Stam-
atovic et al20 have found that CCM3 regu-
lates brain endothelial barrier integrity and 
tight junction complex organisation. Loss of 
CCM3 activates extracellular signal-regulated 
kinase (ERK1/2); activated ERK1/2 induces 
Ser phosphorylation (pS405) of cortactin 
(a cortical actin ring protein), which leads 
to cortactin degradation. Increased cort-
actin degradation is associated with loss of 
the cortical actin ring and ZO-1: actin inter-
actions, which are essential for providing 
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physical support and anchoring of tight junction proteins. 
The reduced anchoring of ZO-1 to the actin cytoskeleton 
impacts organisation of tight junction proteins, and even-
tually disrupts the tight junction complex.

CCM3 also may affect tight junction by indirectly inter-
action with CCM1, as CCM1 has been proved to maintain 
Rap-1 mediated stabilisation of endothelial junction and 
VE-Cadherin mediated adherens junctions.21 22 CCM3 
and germinal-centre kinase III (GCKIII) family associated 
with striatin also interact with the CDC42 binding kinase 
myotonic dystrophy kinase-related CDC42-binding kinase, 
which promotes circumferential actin bundles essential 
for junction formation.23

The role of CCM3 in angiogenesis
Angiogenesis is a process that involves endothelial cells 
proliferation, migration and morphology remodelling. 
He et al24 have shown that CCM3 knockdown in human 
umbilical vein endothelial cells significantly reduces 
endothelial cell proliferation and induced cell apop-
tosis, and also inhibits vascular endothelial growth factor  
(VEGF-induced endothelial cell) cord formation. CCM3 
specifically associates with VEGFR2 and was required for 
stabilisation of VEGFR2, thereby maintaining the VEGF 
signalling pathway which is essential for angiogenesis.

CCM3 can be involved in different signalling pathways 
as an anchor protein which can bind to different target 
proteins. The best-characterised interaction between 
CCM3 and its target proteins lies in the dimerisation-do-
main-mediated interaction with the GCKIII group of 
kinases, MST4/MASK, STK24/MST3 and STK25/YSK1/
SOK1.25

Zhang et al26 have first proved that CCM3 associates 
with STK24 and regulates exocytosis in neutrophils. 
STK24 binds to UNC13D C2B domain and prevent 
UNC13D from binding to lipids, a step important for 
vesicle docking. CCM3 can stabilise the STK24 protein, 
and there is a degranulation phenotype in neutrophils 
during loss of either CCM3 or STK24. Then Jenny Zhou 
et al27 has subsequently uncovered that CCM3 regu-
lates exocytosis in endothelial cells. CCM3 can inhibit 
UNC13-mediated intracellular molecules exocytosis by 
combining with UNC13B and STK24. Thus, loss of CCM3 
increases ANGPT-2 release from Weibel-Palade bodies in 
brain endothelial cells. Increased ANGPT-2 secretion to 
the extracellular space disrupts the association between 
endothelial cells and pericytes, leading to enhanced 
endothelial cell spouting, and lumen formation followed 
by CCM lesion formation.

Zheng et al28 that loss of CCM3 or STK24 also results 
in actin stress fibre formation and elevated RhoA activa-
tion in endothelial cells, so ANGPT-2 induced excessive 
sprouting and lumen formation along with weakened 
cell adhesion and increased permeability result in an 
abnormal and disrupted blood vessel.

Zhou et al29 have reported that CCM complex associ-
ated with GCKIII kinases regulates MEKK3 pathway in 
endocardial cells. Endocardial deletion of CCM1/CCM2/

CCM3 activates MEKK3 and the downstream MEK4 and 
ERK5. Activated ERK5 could be transported into the 
nuclei and upregulate the transcription factor KLF2/4 
and proteases a disintegrin and metalloproteinase with 
thrombospondin motifs   (ADAMTS4/5). Zhou et al29 also 
demonstrate that MEKK3-KLF2/4 signalling is critical for 
the CCM progression.

Other mechanisms about CCM3 regulates CCM progression
EndMT is characterised by the acquisition of mesen-
chymal and stem-cell-like features of endothelium.30 31 
The progression of EndMT leads to disrupted cell junc-
tion organisation, loss of cell polarity, increased cell 
proliferation and migration.32 Maddaluno et al13 have 
shown that EndMT exists in CCM1ECKO and CCM3ECKO 
mice with disorganised VE-Cadherin and significantly 
up-regulated N-Cadherin, and this progress is mediated 
by the upregulation of endogenous BMP6, which in turn 
activates the TGF-β (transforming growth factor-β) and 
BMP (bone morphogenetic protein) signalling pathway. 
Inhibiting TGF-β or BMP pathway prevents EndMT and 
reduces CCM lesion in mice. Autophagy is also related to 
CCM formation and EndMT.33

Louvi et al34 have found that CCM3 deletion in neural 
cells results in a vascular phenotype that resemble human 
CCMs, which suggests CCM3 may affect CCM progres-
sion through cell death pathway. Fidalgo et al35 have also 
found that CCM3-GCKIII kinase (MST4) mediates ezrin/
radixin/moesin phosphorylation and cell survival after 
reactive oxygen species  (ROS) stimulating. Interestingly, 
ROS can be induced by CCM3 deletion in endothelial 
cells.33 All of these studies suggest ROS may be a factor 
implicated in loss of CCM3-dependent CCMs progression.

CCM3 may play an important role in other biological 
phenomenon besides CCM lesion. Guerrero et al36 have 
reported that lack of CCM3 impairs the senescence 
response of cells, which is related to the inability of 
CCM3-deficient cells to induce the C/EBPβ transcription 
factor. CCM3-deficient cells also have a defect in auto-
phagy which may suggest an evidence of immortal cells, 
and one study reveals a relationship between CCM3 muta-
tion and high risk of tumour.37

Progression in CCM therapy
The only treatment for CCM disease is surgical resection 
so far, although there is high risk for cerebral operation. 
To date, no medical therapy has been approved. Based on 
the researches of molecular mechanism which regulate 
CCM progression, some drugs which affect intracellular 
signalling pathway can be effective in animal trials. Admin-
istration of fasudil, a Rho-kinase inhibitor, results in atten-
uated CCM lesion in mice with CCM1 mutations.33 Statin 
inhibits HMG-CoA reductase, which reduces RhoA-de-
pendent small GTPase activation, and presents a symp-
tomatic improvement in mouse model,38 but administra-
tion of statin is associated with increased risk of intracer-
ebral haemorrhage,39 and hence more researches should 
be done before the application of statin in CCM therapy. 
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ANGPT2-neutralising antibody significantly reduces 
CCM lesion formation in CCM3ECKO mice.27 TLR4 (Toll-
like receptor 4) antagonists and alteration of microbiome 
can affect CCM formation in mice.40 Many advances have 
been made, but further studies are still needed to uncover 
novel mechanisms regulating CCMs and develop effective 
drugs preventing the progression of CCMs.

Conclusion
As an anchor protein, CCM3 binds to different type 
of proteins; this enables CCM3 take part in different 
intracellular signalling which affect cell junction, angi-
ogenesis, apoptosis and stress responses (figure  1). 
Some controversial results may exist related to 
specific CCM3-mediated pathways observed in isolated 
endothelial cells. The current prevailing view is that the 
primary defects in CCM are endothelial cells-intrinsic 
in humans, and this has been confirmed by endothelial 
cell-specific gene deletion in mouse models. We have to 
consider that CCM lesion is a comprehensive result of 
all different pathways in the neurovascular unit, which 
consists of several cell types, including endothelial 
cells, pericytes, astrocytes and neuronal cells. Despite 
the mounting knowledge about the role of CCM3 in the 
progression of CCMs, several fundamental questions 
need to be addressed in the CCM field. Why are CCM 
lesions primarily confined to brain vasculature despite 
CCM proteins are ubiquitously expressed in all tissues? 
The unique feature of the brain vasculature is the blood 
brain barrier (BBB) formed by the brain neurovascular 
unit. It is unknown whether or not the unique BBB 
structure and the interactions of endothelial cells with 
neural cells and pericytes play a critical role in CCM 
lesion development. We don’t know the effect of CCM3 
on translational and post-translational modifications 

of those tight junction proteins, and how CCM3 regu-
lates β1 integrin signalling. Recent study uncovered a 
relationship between innate immune/microbiome and 
CCM lesion in mice with CCM1/2 deficiency. Whether 
or not CCM3 is linked to the innate immune pathway is 
unclear yet. We should notice that there may be other 
CCM-related genes, as mutations in CCM1/CCM2/
CCM3 do not cover all the familiar cases. There is no 
doubt that further studies are necessary to better under-
stand the mechanism and pathogenesis of CCMs and 
find a non-invasive therapy for CCM disease.
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