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ABSTRACT
Background  Identification of futile recanalisation 
following endovascular therapy (EVT) in patients with 
acute ischaemic stroke is both crucial and challenging. 
Here, we present a novel risk stratification system based 
on hybrid machine learning method for predicting futile 
recanalisation.
Methods  Hybrid machine learning models were developed 
to address six clinical scenarios within the EVT and 
perioperative management workflow. These models were 
trained on a prospective database using hybrid feature 
selection technique to predict futile recanalisation following 
EVT. The optimal model was validated and compared with 
existing models and scoring systems in a multicentre 
prospective cohort to develop a hybrid machine learning-
based risk stratification system for futile recanalisation 
prediction.
Results  Using a hybrid feature selection approach, we 
trained and tested multiple classifiers on two independent 
patient cohorts (n=1122) to develop a hybrid machine 
learning-based prediction model. The model demonstrated 
superior discriminative ability compared with other models 
and scoring systems (area under the curve=0.80, 95% CI 
0.73 to 0.87) and was transformed into a web application 
(RESCUE-FR Index) that provides a risk stratification 
system for individual prediction (accessible online at ​fr-​
index.​biomind.​cn/​RESCUE-​FR/).
Conclusions  The proposed hybrid machine learning 
approach could be used as an individualised risk prediction 
model to facilitate adherence to clinical practice guidelines 
and shared decision-making for optimal candidate 
selection and prognosis assessment in patients undergoing 
EVT.

INTRODUCTION
Endovascular therapy (EVT) is a very effec-
tive treatment for acute ischaemic stroke 
(AIS) with large-vessel occlusion (LVO), revo-
lutionising AIS treatment strategies world-
wide. However, in clinical practice, approxi-
mately half of the patients could not achieve 
favourable outcomes despite successful 

endovascular recanalisation, signifying futile 
recanalisation.1 2

Current guidelines3 4 do not include infor-
mation on estimating the risk of futile reca-
nalisation following EVT in AIS. A powerful 
tool predicting futile recanalisation after EVT 
is in urgent need in order to better guide the 
treatment decision and provide prognostic 
information for the patient and family. Predic-
tors of futile recanalisation5 can be used to 
evaluate the necessity of pursuing EVT.

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Several outcome prediction models have been de-
veloped for acute ischaemic stroke (AIS) patients 
undergoing endovascular therapy (EVT). However, 
identification of unfavourable outcomes after suc-
cessful recanalisation remains a challenge. While 
existing models and risk scores have the potential to 
facilitate patient selection and prognostication, their 
application in daily clinical practice is hampered by 
various limitations.

WHAT THIS STUDY ADDS

	⇒ This study introduces a hybrid machine learning-
based risk stratification tool that incorporates all 
relevant features of the general EVT workflow and 
perioperative management to accurately predict 
futile recanalisation in AIS patients undergoing EVT 
within the time frame from emergency room arrival 
to 24 hours post-EVT.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The proposed model carries the potential to provide 
clinicians and researchers with a simple automated 
tool for optimal candidate selection and prognosis 
assessment in patients undergoing EVT, and to facili-
tate adherence to clinical practice guidelines and aid 
in informed decision-making processes.
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Over the past decade, several outcome prediction 
models have been developed for AIS patients undergoing 
EVT.6 However, identification of unfavourable outcomes 
after successful recanalisation is still challenging, and 
only a limited number of models7 can predict futile reca-
nalisation based on the information available following 
successful recanalisation. Hence, further studies are 
needed to build accurate predictive models for futile 
recanalisation. While the currently available models 
and risk scores have the potential to facilitate candidate 
selection and prognosis assessment, their utilisation in 
daily clinical practice is hampered by various limitations, 
including issues related to generalisability, impact analysis 
and routine evaluation of robust predictors.

In comparison with traditional modelling methods 
such as statistical logistic regression, machine learning 
(ML) offers a range of algorithms that are free from linear 
assumptions and can handle collinearity with regularisa-
tion hyperparameters. ML has demonstrated effective-
ness in modelling multifactorial events in various fields, 
including bioinformatics. Hybrid ML algorithms8 9 exhibit 
much greater scalability, as they accommodate a large 
number of features and parameters within the models.10 
Traditional ML is prone to fall into the curse of dimen-
sionality. If there are adundant features, a large amount 
of data would be needed to properly train the model; 
otherwise, the chance of overfitting the model would be 
high. Hybrid ML shows the potential to overcome these 
issues. Thus, hybrid ML constitutes a promising method 
for outcome prediction and may be superior to the clas-
sical logistic regression and ML models.

Therefore, the current study aims to develop a hybrid 
ML-based risk stratification system for the prediction of 
futile recanalisation using clinical, imaging and treatment 
data of AIS patients undergoing EVT from a large EVT 
cohort and evaluate its performance in two validation 
sets (cross internal validation and external validation). 
We hypothesise that hybrid ML can capture high-
dimensional, non-linear relationships among multimodal 
clinical features, and the hybrid ML-based risk stratifica-
tion system can predict futile recanalisation in individual 
patients more accurately compared with existing risk 
scores. The proposed model has the potential to provide 
clinicians and researchers with a simple automated tool 
for optimal candidate selection and prognosis assess-
ment in patients undergoing EVT, and to facilitate adher-
ence to clinical practice guidelines and aid in informed 
decision-making processes.

METHODS
In brief, six hybrid ML prediction models corresponding 
to six clinical scenarios in the workflow of EVT and peri-
operative management were developed. These models 
were constructed using data from patients enrolled in the 
Registration study for Critical Care of Acute Ischaemic 
Stroke after Recanalisation (RESCUE-RE) registry 
(n=1218).11 The optimal models were validated in a 

multicentre prospective cohort (n=263). The two cohorts 
were completely independent. The primary outcome was 
futile recanalisation, which was defined as an unfavour-
able 90-day outcome, namely a modified Rankin Scale 
(mRS)≥3, despite successful reperfusion (a modified 
Thrombolysis in Cerebral Infarction (mTICI) grades 2b–3 
reperfusion flow after EVT). Hybrid ML models were 
constructed to predict futile recanalisation, in which, vari-
ables were selected using the two-stage feature selection 
pipeline (TFSP). In the first stage, paired t-test was used 
for continuous data and χ2 test was used for categorical 
data to obtain statistically significant features. Then, the 
statistical features were combined with the global optimi-
sation capabilities of genetic algorithm, with the aim of 
obtaining superior feature subsets that address a broader 
range of problems. These features were ranked based on 
their importance or performance in classification, and 
the top 10 features were selected. Subsequently, a hybrid 
ML-based risk stratification system was developed for the 
prediction of futile recanalisation, following a structured 
research process consisting of five steps: data preproc-
essing, feature selection, model training, performance 
evaluation and external validation, as shown in figure 1.

Derivation cohort
From July 2018 to May 2019, AIS patients treated with EVT 
within 24 hours of stroke onset who met the following 
criteria were enrolled into the derivation cohort used 
for the development of the proposed models from 
RESCUE-RE: (1) age >18 years old; (2) AIS diagnosed 
based on cerebral imaging with documented LVO in the 
anterior or posterior circulation, which was confirmed 
by CT angiography or MR angiography (intracranial 
carotid artery, middle cerebral artery, anterior cerebral 
artery, basilar artery and vertebral artery); (3) successfully 
recanalised, defined as mTICI of 2b or 3 after EVT; (4) 
prestroke mRS score ≤2 and (5) patients were followed 
up for 3 months. Details of RESCUE-RE have been previ-
ously reported.

Variables and outcomes measurement
Variables used in the current study included baseline 
characteristics and details on workflow, EVT procedure, 
perioperative treatment, imaging and clinical outcomes. 
National Institutes of Health Stroke Scale (NIHSS) 
score at admission was used to assess stroke severity. The 
primary outcome was poor functional outcome despite 
successful recanalisation, defined as a dichotomised mRS 
score of 3–6 at 90 days.

Model definition
The current study developed six models corresponding 
to six clinical scenarios in the workflow of EVT and peri-
operative management (online supplemental figure 1). 
The predictors were clustered in six models (models 1–6) 
according to the time of acquisition from emergency 
room (ER) arrival to 24 hours post-EVT: baseline param-
eters from primary clinical evaluation after ER arrival, 
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Figure 1  The flow chart of FR-model development. The process of FR-Model development consisted of five parts: (a) Data 
preprocessing: select variables based on expert opinion and availability, select patients based on the inclusion criteria, handle 
missing and error values, scale all individual features to have a unit norm, and integrate low-level semantic information variables 
into higher-level variables. (b) Feature selection, the study adopted a two-stage feature selection pipeline (TFSP), including two 
steps: selection of variables with p<0.05, and selection of the top 10 important features using feature importance ranking. (c) 
Model training, the model was developed with selected features based on a 10-fold nested cross-validation (CV) framework, 
and 5 baseline machine learning models were fitted during the nested CV, including RF, gcForest, SVM, XGBoost and KNN. (d) 
Performance evaluation, the AUC was used to compare the performance of different models. Moreover, sensitivity, specificity, 
accuracy and precision were also considered as auxiliary indicators for the general evaluation of the forecasting model 
characteristics. According to the model predictive probability, two cut-off thresholds were adopted for the RESCUE-FR index 
to divide the patient population into the low-risk group, intermediate-risk group and high-risk group. (e) External Validation, the 
top 10 features with the highest frequency across all internal CV folds were selected as new model inputs and were used to 
retrain the model in the derivation cohort, whose performance was then evaluated in the validation cohort and compared with 
the proposed model in previous research. AUC, area under the curve; BMI, body mass index; FR, futile recanalisation; KNN, 
k-nearest neighbour; ML, machine learning; RF, random forest; ROC, receiver operating characteristics; SVM, support vector 
machines; GA, genetic algorithms; MICE, multiple imputation by chained equations; RESCUE-FR, Registration study for Critical 
Care of Acute Ischemic Stroke: Prediction of Futile Recanalisation.
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baseline imaging parameters, baseline laboratory indexes, 
initial digital subtraction angiography (DSA) parameters, 
EVT procedure parameters, postprocedural and post-
reatment parameters (online supplemental table 1). 
These six models encompassed the following time points: 
on ER arrival, after initial imaging evaluation, after initial 
laboratory tests, after initial DSA, immediately after EVT 
and 24 hours post-EVT, respectively. Each group of predic-
tors was incrementally added to the previous model, with 
model 1 including only baseline patient data. This process 
yielded six models with increasing extensiveness.

The developed models were internally validated in 
the derivation cohort. Subsequently, the most extensive 
model was validated in an external dataset and used to 

develop a hybrid ML-based risk stratification system for 
futile recanalisation prediction.

Model development
As shown in figure 1, the research process involved five 
key steps: data preprocessing, feature selection, model 
training, performance evaluation and external validation.

Data preprocessing
The initial step involved manual variable selection, where 
primary and critical clinical variables were chosen from 
a vast pool of thousands based on expert judgement and 
their availability within the derivation cohort. In the selec-
tion process, priority was given to causal and modifiable 

Table 1  Important characteristics of the derivation and validation cohorts

Characteristics Derivation cohort (N=945) Validation cohort (N=177) P value

Baseline characteristics

 � Male, n (%) 605 (64.02) 122 (68.93) 0.21

 � Age, mean±SD, years 64.92±12.18 64.04±12.73 0.38

 � NIHSS, median (IQR) 15 (11–21) 14 (10–17) 0.01

Medical history, n (%)

 � Diabetes 209 (22.12) 41 (23.16) 0.76

 � Hypertension 538 (56.93) 104 (58.76) 0.65

 � Stroke/TIA 179 (18.94) 41 (23.16) 0.19

 � Atrial fibrillation 79 (8.36) 26 (14.69) 0.01

 � Current smoke 335 (35.52) 66 (37.29) 0.65

 � IVT, n (%) 281 (29.74) 56 (31.64) 0.61

Occlusion location

 � ICA 253 (26.77) 36 (20.34) 0.07

 � ACA 15 (1.59) 5 (2.82) 0.25

 � MCA 479 (50.69) 74 (41.81) 0.03

 � VA 84 (8.89) 7 (3.95) 0.03

 � BA 151 (15.98) 16 (9.04) 0.02

 � PCA 18 (1.90) 2 (1.13) 0.47

Time intervals, median (IQR), min

 � Onset to door 186 (97–346) 204 (110–300) 0.01

 � Onset to recanalisation 480 (344–658) 472 (351–640) 0.44

Passes, n (%) 0.32

 � <3 593 (62.75) 118 (66.67)

 � ≥3 352 (47.25) 59 (33.33)

Post-EVT mTICI, n (%) 0.75

 � 2b 278 (29.42) 50 (28.25)

 � 3 667 (70.58) 127 (71.75)

24 hours follow-up, median (IQR)

 � 24 hours GCS 11 (7–14) 11(7–15) 0.77

 � 24 hours NIHSS 13 (7–19) 13 (6–18) 0.71

 � Infarct volume at 24 hours, mL 20.31 (6.82–60.38) 26.65 (8.91–97.90) 0.10

 � mRS 3–6 at 90 days, n (%) 510 (53.97) 107 (60.45) 0.11

ACA, anterior cerebral artery; BA, basilar artery; EVT, endovascular treatment; GCS, Glasgow Coma Scale; ICA, internal carotid artery; IVT, 
intravenous thrombolysis; MCA, middle cerebral artery; mRS, modified Rankin Scale; mTICI, modified Thrombolysis in Cerebral Infarction; NIHSS, 
National Institutes of Health Stroke Scale; PCA, posterior cerebral artery; TIA, transient ischaemic attacks; VA, vertebral artery.
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factors. The RESCUE-RE study contained many variables 
with similar semantic information, such as the location 
of responsible vessels. Moreover, there were also low-level 
semantic information variables that could be integrated 
into higher-level variables. Variables with ≥20% missing 
values were excluded from further analysis. Multivariate 
imputation via chained equations was used to impute 
missing values. Categorical variables were binarised 
with one-hot encoding. Afterwards, these variables were 
normalised to scale all individual features to a unit norm.

Feature selection
The current study adopted a TFSP12 for feature selection. 
In the first stage, paired t-tests were used for continuous 
data, and χ2 tests for categorical data, with significance 
set at p<0.05, to identify statistically significant features. 
Subsequently, different feature selection methods were 
compared and the best one was chosen to rank the statis-
tically significant features (p<0.05). Finally, multiple deci-
sion trees in a random forest (RF) are used to assess the 
importance of features. We decided to remain the prin-
cipal components that importance more than 1%. Ulti-
mately, we selected the 10 features. Statistical features are 
combined with genetic algorithms to obtain a subset of 
superior features.

Model training
The multistage predictive model was developed with 
selected features based on a 10-fold nested CV framework 
that was composed of an outer CV loop and an inner CV 
loop. In addition, during the nested CV, five baseline ML 
algorithms were used, including RF, gcForest, support 
vector machines, extreme gradient boosting and k-nearest 
neighbour. These models were optimised with hyperpa-
rameters using genetic algorithms. All ML algorithms 

have been implemented using prebuilt approaches avail-
able in the Python module Scikit-Learn (V.0.24.2). Details 
of the model training process are presented in online 
supplemental material.

Performance evaluation
The area under the receiver operating characteristics 
curve (AUC), F-score and log loss were used to compare 
the performance of different models. Moreover, sensi-
tivity, specificity, accuracy and precision were also consid-
ered as auxiliary indicators for the general evaluation of 
the forecasting model characteristics. To assist doctors in 
the clinical decision-making process, two cut-off thresh-
olds were set up for the predictive probability [Regis-
tration study for Critical Care of Acute Ischemic Stroke: 
Prediction of Futile Recanalisation (RESCUE-FR) Index] 
of the proposed model (RESCUE-FR Model) to divide the 
patient population into the low-risk group, intermediate-
risk group and high-risk group.

External model validation
In order to avoid overfitting, the model effectiveness 
and generalisation were verified with an independent 
multicentre prospective cohort comprising acute stroke 
patients with LVO who received EVT at four stroke 
centres. Following inner validation, the top 10 features 
with the highest frequency and the hyperparameters with 
the largest AUC across all internal CV folds were selected 
as new model inputs. These inputs were then used to 
retrain the model in the derivation cohort, and its perfor-
mance was evaluated in the validation cohort. Similarly, 
the accuracy of the risk stratification was validated in 
the validation cohort following the same risk stratifica-
tion method used in the derivation cohort. Meanwhile, 
the performance of the RESCUE-FR model in previous 

Figure 2  Performance of different models in RESCUE-RE using TFSP (10 features). According to 10 features selected with 
TFSP, 5 algorithms were used for each model. The performance of five algorithms in each model is shown in a–f. AUC, area 
under the curve; RESCUE-RE, Registration study for Critical Care of Acute Ischaemic Stroke after Recanalisation; TFSP, two-
stage feature selection pipeline.
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research was compared with its performance in the valida-
tion cohort. The performance of the RESCUE-FR model 
in the previous research was calculated according to the 
risk score formula provided by the research articles.

Statistical analysis
Continuous variables were presented as mean±SD or 
medians (IQR), depending on the distribution of the 
variable. Categorical variables were presented as numbers 
(percentages). Student’s t-tests or Mann-Whitney U tests 
were used for the comparison of continuous variables. 
χ2 tests or Fisher’s exact tests were used for the compar-
ison of categorical variables. In the derivation cohort, the 
TFSP in feature selection included two steps: selection of 
variables with p<0.05 and selection of the top 10 impor-
tant features using feature importance ranking. Compar-
isons of AUC were performed using the DeLong test. A 
two-sided p<0.05 was considered statistically significant. 
All statistical analyses were performed by using SAS soft-
ware V.9.4 (SAS Institute).

RESULTS
Patient characteristics
A total of 945 patients (65±12 years, 605 (64%) males) from 
the RESCUE-RE registry11 who met the inclusion criteria 
were included in the final derivation cohort. A total of 
177 eligible patients (64±13 years, 122 (69%) males) who 
underwent EVT from October 2020 to September 2021 
were prospectively enrolled and included in the valida-
tion cohort (online supplemental figure 2). After a 90-day 
follow-up, 510 (54%) patients in the derivation cohort had 
unfavourable outcomes, and there were 107 (60%) cases 
of futile recanalisation in the validation cohort. Baseline 
patient characteristics, workflow and essential outcome 
features were comparable between the derivation and 
validation cohorts (table 1). Online supplemental table 2 
provides additional details on both cohorts.

Model performance in different models using all features
There were about 2000 variables in the RESCUE-RE study 
database. After manual selection and data preprocessing, 
101 variables were analysed in feature extraction across 6 
models according to the time of acquisition. The perfor-
mance of the five ML methods, which allowed for inte-
grative modelling of all baseline and peri-interventional 
features for predicting futile recanalisation, is illustrated 
in online supplemental figure 3 and online supplemental 
table 3. In short, models 1–6, using the best-performing 
ML method, predicted futile recanalisation in the 

derivation cohort with AUCs ranging from 0.71 to 0.86 
and accuracies from 0.65 to 0.78.

Feature extraction of the models
For the feature importance analysis, TFSP was employed 
to determine the rankings of the 101 features. The statis-
tically significant (p<0.05) features selected in the first 
stage are shown in online supplemental table 4. The 
performance comparisons of similarity models with 
varying number of features showed that the performance 
of the model might not decrease as long as more than 
10 features were included for modelling online supple-
mental figure 4. The top 10 features for each of the 6 
models are shown in online supplemental figure 5. The 
feature importance evaluation showed that a total of 10 
features had more than 1% importance (online supple-
mental figure 6). To explore the importance of genetic 
algorithms in feature selection, the ablation experiment 
is depicted in online supplemental table 5

Model performance in different models using TFSP (10 
features)
The futile recanalisation prediction performance of 6 
models using TFSP (10 features) with 5 ML methods in 
the derivation cohort is illustrated in figure 2 and online 
supplemental table 2. Among the evaluated ML classifiers, 
RF and gcForest achieved the largest AUCs for the predic-
tion of futile recanalisation across all clinical scenarios. 
In summary, models 1–6, using the best-performing ML 
method, predicted futile recanalisation in the derivation 
cohort with AUCs ranging from 0.71 to 0.85 and accu-
racies from 0.63 to 0.78. Notably, model 6, when using 
the RF algorithm, significantly outperformed the other 
models across all ML algorithms, with an AUC of 0.85 
(95% CI 0.78 to 0.93).

The optimal models using TFSP (10 features) demon-
strated comparable prediction and discrimination abil-
ities to those using all features in model 1, model 2 
and model 6 (online supplemental figure 7). However, 
models 3–5 showed improved performance when using 
all features.

External validation and comparison of the RESCUE-FR model 
with the pre-existing models and scores
The performance of model 6 using TFSP (10 features) in 
the validation cohort is shown in table 2. Model 6 achieved 
the best results in the validation cohort, with an accuracy 
of 75%, a recall (sensitivity) of 78%, a specificity of 71%, 
an F-score of 0.75 and an AUC of 0.80 (0.73–0.87).

Table 2  The performance metrics of model 6 using TFSP in the derivation and validation cohorts

Data set Classifier Accuracy AUC SPE SEN Precision F1 Log

Derivation RF 0.77 0.85 (0.78–0.93) 0.72 0.83 0.78 0.80 0.48
Validation RF 0.75 0.80 (0.73–0.87) 0.71 0.78 0.81 0.75 0.55

AUC, area under the curve; Log, log loss; RF, random forest; SEN, sensitivity; SPE, specificity; TFSP, two-stage feature selection pipeline.
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The performance of the RESCUE-FR Model (model 
6) was compared with that of the previous conventional 
ML methods, statistical methods and risk scores using 
all available parameters for predicting futile recanalisa-
tion in the validation cohort. The model proposed in the 
current research significantly outperformed the others, 
with an AUC of 0.80 compared with AUCs ranging from 
0.56 to 0.71 (p<0.05) (figure 3).

ML-based risk stratification: RESCUE-FR index
Based on the predicted probability of futile recanalisation 
generated by the RESCUE-FR model, appropriate thresh-
olds need to be chosen to classify patients into three 
groups (low risk, intermediate risk and high risk). We 
calculated the number of patients with poor outcomes 
(mRS:3–6) and good outcomes (mRS:0–2) in the deriva-
tion cohort when the predicted probability was less than 
0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5 and greater than 0.4, 0.5, 
0.6, 0.65, 0.7, 0.75, 0.8 (online supplemental tables 6,7). 
We selected thresholds that would divide one-third of the 
population (945/3, 315 patients) into each risk category: 
0.35 as low-risk threshold and 0.7 as high-risk threshold. 
By applying this risk stratification standard (low risk 
<35%, intermediate risk 35%–70% and high risk >70%), 
we achieved classification accuracies of 92.41% for low 
risk and 98.73% for high risk in the derivation cohort. 
In the validation cohort, the classification accuracies for 

low risk and high risk were approximately 80% (online 
supplemental figure 8). The proposed RESCUE-FR 
model has been transformed into a web application 
(RESCUE-FR index) that provides predictions of futile 
recanalisation for individual AIS patients who underwent 
EVT based on the ten features used in model 6. This web 
application shows the predicted probability and risk strat-
ification with bar charts (figure 4). This web application 
is accessible online at ​fr-​index.​biomind.​cn/​RESCUE-​FR/.

DISCUSSION
This study developed and tested a hybrid ML-based risk 
stratification tool that took into account all relevant 
features of the general workflow of EVT and perioper-
ative management. This tool accurately predicts futile 
recanalisation in AIS patients undergoing EVT within the 
time frame from ER arrival to 24 hours post-EVT. Among 
the evaluated ML classifiers, the performance of RF and 
gcForest emerged as the top performers. Consequently, 
RF was used to create the RESCUE-FR Model. With a 
larger AUC in the external validation, the RESCUE-FR 
model significantly outperformed other currently 
available models and risk scores and identified a high-
risk group characterised by a smaller size and a higher 
proportion of futile recanalisation cases. In addition, 
an online calculator (available at ​fr-​index.​biomind.​cn/​

Figure 3  Comparing the predictive power of the RESCUE-FR model with that of other models and risk scores in validation 
cohort. The performance of the proposed model in previous research was compared with the RESCUE-FR model in the 
validation cohort. The performance of the proposed model in the previous research was calculated according to the risk score 
formula provided by the research articles. AUC, area under the curve; RESCUE-FR, Registration study for Critical Care of Acute 
Ischemic Stroke: Prediction of Futile Recanalisation.
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RESCUE-​FR/) was developed to enable the convenient, 
interactive and personalised calculation of futile recana-
lisation probability in AIS patients undergoing EVT. The 
innovation in our study is reflected in the unique feature 
screening method and meticulous model optimisation 
(hybrid ML), which goes beyond the mere utilisation of 
existing ML models. Additionally, our model’s capacity to 
make multitime point predictions holds great relevance 
to clinical application. It is noteworthy that our study 
achieved the best results when compared with similar 
existing studies.

A major limitation of existing risk scores is their limited 
reliability and effectiveness in the risk assessment at the 
individual patient level, as demonstrated by the difficulty in 
extrapolating outcome estimates from large clinical trials.13 
However, individual prognostication is essential in developing 
appropriate personalised treatment plans and making crit-
ical medical decisions across various clinical scenarios. The 
simultaneous interpretation of multiple risk predictors for a 
single patient poses a formidable challenge for clinicians.

Our study demonstrated that hybrid ML can effectively 
address these challenges by leveraging complex higher-
level interactions among numerous clinical features. 
Consequently, the proposed RESCUE-FR model exhibited 
improved discrimination and prediction capability for futile 
recanalisation compared with existing risk scores and models. 
Moreover, the RESCUE-FR model showed the potential to 
identify patients with a constantly increasing risk of futile 
recanalisation throughout the entire peri-EVT period, a 
scenario not explicitly addressed in existing clinical practice 
guidelines. The current study rigorously evaluated ML algo-
rithms using different classifiers and explored a wide range 
of hyperparameters. Among the evaluated algorithms, the RF 
classifier outperformed the others, consistent with previous 
studies using ML to predict clinical endpoints.

Commonly used clinical predictors in EVT include age 
and stroke severity measured by the NIHSS or the Cana-
dian Neurological Score. CT score and Alberta Stroke 
Programme Early CT score are the most widely used 
radiology assessment tools. The current study identified 
several significant predictors of futile recanalisation, 
many of which have been previously reported as influ-
encing factors in EVT outcomes, such as age, baseline 
NIHSS score, NIHSS score after 24 hours, time metric 
of the procedure, volume of the infarct and several labo-
ratory test results from blood biochemistry and routine 
blood tests. Most models, including the RESCUE-FR 
Model, predict outcomes after EVT but do not include 
peritreatment information. While the current study 
initially considered peritreatment information, it was 
subsequently removed after feature selection. None-
theless, such information could still be of added value 
to patient assessment. However, as ML models capture 
higher dimensional, nonlinear interactions among 
features at different processes and time points, it is chal-
lenging to assess the independent impact of each variable 
on the predicted probability of futile renormalisation. 
Therefore, it is possible that some important features 
were removed during ML feature selection process, such 
as baseline imaging characteristics obscured by infarct 
volume at 24 hours, other follow-up clinical characters 
and their non-linear interactions in the proposed model.

This study has several strengths and limitations to be 
acknowledged. Most ML-based models require a broad spec-
trum of input variables, which might discourage clinicians 
from its utilisation at first glance. Therefore, the score in 
the current study was designed in a way that accommodate 
missing values and reduces the number of non-significant 
features. Nevertheless, the presence of multiple missing vari-
ables and feature selection may compromise its reliability. 

Figure 4  Implementation of RESCUE-FR Index and the efficiency of risk stratification. (a) RESCUE-FR Index: An Artificial 
Intelligence Clinical Decision Tool for Forecasting Futile Recanalisation in Stroke Patients After Endovascular therapy. 
Implementation of the tool at https://fr-index.biomind.cn/RESCUE-FR/, where one can enter the raw information and obtain 
risk scores. (b) According to the risk stratification standard (low risk<35%, intermediate risk 35%–70%, high risk >70%), the 
classification accuracy was demonstrated in the validation cohort, RESCUE-FR, Registration study for Critical Care of Acute 
Ischemic Stroke: Prediction of Futile Recanalisation.
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Another limitation of the proposed risk score model is the 
lack of an impact analysis to determine how its utilisation 
improves patient care and outcomes. Hence, future investi-
gations should aim to identify treatment regimens that are 
specifically tailored to the different risk levels assessed by the 
RESCUE-FR index. Since the application of ML depends on 
the robustness of the database, practical use of the proposed 
model in patient care requires careful and structured data 
collection. Additionally, it is important to note the limitations 
associated with the small size of the validation cohort and 
the constraints inherent to the ML algorithms used in this 
study (eg, extended training time, large memory consump-
tion, limited interpretability of RF, limited scalability and 
training complexity of gcForest). However, as the availability 
of large and structured databases becomes more prevalent 
in the future, addressing these limitations may become more 
feasible.

To our knowledge, RESCUE-FR index is the first accurate 
and externally validated hybrid ML algorithm with real-world 
applicability for guiding clinicians in the prediction of futile 
recanalisation. Therefore, integration of this tool into daily 
clinical practice may facilitate optimal candidate selection 
and prognostication of patients undergoing EVT.
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