Clinical Implications of Hemodynamics in Symptomatic Intracranial Atherosclerotic Stenosis by Computational Fluid Dynamics Modeling: A Systematic

Review

Supplemental material

Supplemental materials

Supplemental Methods
Supplemental Table S1. Search strategy for PubMed, conducted on 28 th March 2024 5
Supplemental Table S2. Search strategy for Ovid, conducted on 28 th March 20246
Supplemental Table S3. Study characteristics of the 19 primary studies included in
this systematic review7
Supplemental Table S4. Risk of bias assessment of 19 studies included in the
systematic review using a modified Newcastle-Ottawa Scale11
Supplemental Table S5. Software for CFD modeling in 19 primary studies included in
the systematic review
Supplemental Figure S1. Workflow of CFD modeling15
Appendix. The modified Newcastle-Ottawa Scale for risk of bias assessment of the
longitudinal and cross-sectional studies included in the systematic review16
Supplemental References

Supplemental Methods

Study selection

Two investigators (Y.L. and S.L.) screened the articles identified through literature search, removing duplicates, and excluding irrelevant articles by reading the titles and abstracts. Two investigators (Y.L. and X.L.) then examined the full text for eligible studies according to the inclusion criteria.

Data extraction

Two investigators (Y.L. and X.L.) independently extracted the following data from eligible studies: country/region of study, patient inclusion criteria regarding sICAS, lesion location (anterior and/or posterior circulation), number of cases, neurovascular imaging modality for detecting sICAS and providing source images for vessel segmentation, CFD modeling methods (generic or patient-specific inlet and outlet boundary conditions, rigid or elastic vessel wall assumption, Newtonian or non-Newtonian blood assumption, and steady or transient simulation). More importantly, we recorded the hemodynamic parameters of interest in each study, and the main findings regarding the associations of these hemodynamic metrics with other imaging markers (e.g., stenosis rate, plaque characteristics, and collateral and perfusion status) or clinical features/outcomes (e.g., risk of stroke recurrence, functional outcome, outcomes after certain treatment) in cross-sectional or longitudinal analyses.

Risk of bias assessment

Two investigators (Y.L. and S.L.) independently assessed the risk of bias of included studies using a modified Newcastle-Ottawa Scale (mNOS),¹ covering 9 items in the following domains, subject selection, comparability and outcome. Items regarding the quality of outcomes were not assessed in the cross-sectional studies. Longitudinal studies scoring 7-9 and cross-sectional studies scoring 4-6 were considered as having a low risk of bias (Supplemental Appendix).

Supplemental material

Supplemental Table S1. Search strategy for PubMed, conducted on 28th March 2024

		Number of
Search#	Search queries	items
		found
#1	Search: ((intracranial OR intracranial arter* OR intracranial large arter* OR intracranial large-arter* OR cerebral OR cerebral arter* OR cerebral large arter* OR cerebral large-arter* OR anterior circulation OR posterior circulation OR anterior-circulation OR posterior-circulation OR middle cerebral arter* OR anterior cerebral arter* OR posterior cerebral arter* OR basilar arter*) OR ((internal carotid arter* AND (intracranial OR siphon OR terminal OR distal OR C5 OR C6 OR C7 OR C5-7 OR C5-C7)) OR ((vertebral arter* OR vertebrobasilar arter*) AND (intracranial OR terminal OR V4)))) AND (steno* OR occlus* OR atherosclero*)	93,848
#2	Search: hemodynamic* OR haemodynamic* OR computational fluid dynamic* OR CFD	295,685
#3	Search: (#1) AND (#2)	6,769
#4	Search: (#1) AND (#2) Filters: Full text, English, from 2000 - 2024	3,752

Search#	Search queries	Number of items found
#1	((intracranial OR intracranial arter* OR intracranial large arter* OR intracranial large-arter* OR cerebral OR cerebral arter* OR cerebral large arter* OR cerebral large-arter* OR anterior circulation OR posterior circulation OR anterior-circulation OR posterior-circulation OR middle cerebral arter* OR anterior cerebral arter* OR posterior cerebral arter* OR basilar arter*) OR ((internal carotid arter* AND (intracranial OR siphon OR terminal OR distal OR C5 OR C6 OR C7 OR C5-7 OR C5-C7)) OR ((vertebral arter* OR vertebrobasilar arter*) AND (intracranial OR terminal OR V4)))) AND (steno* OR occlus* OR atherosclero*).af.	114,678
#2	(hemodynamic* or haemodynamic* or computational fluid dynamic* or CFD).af.	407,081
#3	1 and 2	8,322
#4	limit 3 to (full text and english language and yr="2000 -Current")	1,473

Supplemental Table S2. Search strategy for Ovid, conducted on 28th March 2024

Supplemental Table S3. Study characteristics of the 19 primary studies included in this systematic review

		Patient	Anterior/	or/ N	Neurovascular imaging modality		CH	D model setup)		Hemodynamic	
Study	Country	inclusion criteria	Posterior circulation	Number of cases		Inlet boundary condition	Outlet boundary condition	Vessel wall condition	Newtonian/ non-Newton ian blood	Steady vs Transient simulation	parameters in CFD model	Main findings on clinical implications
Correlations with	h anatomical ch	aracteristics of the	sICAS lesions in	n cross-sectio	nal and longitudinal	studies						
Nam et al. 2016 ¹⁵	China	50-99% sICAS	Anterior circulation	56	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR、SSR ratio、 Velocity ratio	Lower PR (p<0.001) was found in sICAS lesions with severe (70-99%) stenosis than moderate (50-69%) stenosis.
Liu et al. 2017 ¹¹	China	70-99% sICAS	Anterior & posterior circulations	11	СТА	Patient-specifi c	Generic LPM	Rigid, non-slip	Newtonian	Transient	PR	PR was not linearly proportional to the stenosis rate in patients with sICAS.
Zhang et al. 2021 ¹⁶	China	50-99% sICAS	Anterior circulation	40	TOF-MRA	Generic	Generic	Rigid, non-slip	Newtonian	Transient	PR、WSSR	Higher WSSR (medians 9.98 vs. 5.99, p=0.004) and higher WSS (means 53.99 Pa vs. 39.98 Pa, p=0.023) at the narrowest location in plaques with positive than negative remodeling; Positive correlation of the remodeling index (Pearson's r=0.376, p=0.026) and plaque area (Pearson's r=0.407, p=0.015) with WSSR; No significant association of PR (medians 0.92 vs. 0.96, p=0.260) with positive/negative remodeling.
Lan et al. 2020 ¹³	China	50-99% sICAS	Anterior & posterior circulations	39	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	rWSS measures	A higher maximum WSS (adjusted OR:1.20, 95%CI:1.03-1.39, p=0.019) and larger rWSS of the high-WSS region (adjusted OR:1.53, 95%CI:1.07-2.19, p=0.021), across the sICAS lesion or measured in the proximal and distal segments of the lesion, were independently associated with stenosis regression of sICAS over 1 year.
Correlations with	n collateral and	perfusion status in	cross-sectional	studies								
Leng et al. 2018 ¹⁷	China	50-99% sICAS	Anterior circulation	85	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	Pressure gradient	A larger pressure gradient correlated with good leptomeningeal collaterals (adjusted OR for 10 mmHg increment in absolute pressure gradient:1.70, 95%CI:1.06-2.74, p=0.029).

		Patient	Anterior/	ior/	Neurovascular		CF	D model setup)		Hemodynamic	
Study	Country	inclusion criteria	Posterior circulation	Number of cases	imaging modality	Inlet boundary condition	Outlet boundary condition	Vessel wall condition	Newtonian/ non-Newton ian blood	Steady vs Transient simulation	parameters in CFD model	Main findings on clinical implications
Lan et al. 2020 ¹⁸	China	50-99% sICAS	Anterior circulation	83	CTA	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR	Lower PR (means 0.79 vs. 0.90, p=0.015) and better leptomeningeal collateral status (56.7% vs. 34.5% with good LMCs, p=0.079) among patients with severe stenosis (70-99%) than those with moderate stenosis (50-69%); Cerebral perfusion supplying stenotic territory may depend more on leptomeningeal collateral flow (Pearson's r=0.038, p=0.051) in patients with severe stenosis but more on antegrade blood flow (Pearson's r=-0.605, p<0.001) in moderate stenosis.
Wang et al. 2023 ¹⁹	China	30-99% sICAS	Anterior & posterior circulations	18	Biplane DSA	Patient-specifi c	Patient-specif ic	Rigid, non-slip	Newtonian	Steady	PR	PR was negatively correlated with Tmax (Spearman's $r=-0.73$, $p<0.01$), the duration to the maximum of residue function.
Raynald et al. 2023 ¹²	China	50-70% sICAS	Anterior & posterior circulations	20	СТА	Generic	Patient-specif ic developed algorithm	Rigid, non-slip	Newtonian	Transient	Pressure, Velocity	Good agreement on blood flowrate derived from CFD modeling and TCD measurements (mean difference:-0.78 ml/s, p for Bland-Altman test=0.027); Less agreement on mean velocities derived from CFD modeling and TCD assessment (mean difference:-0.05 cm/s, p for Bland-Altman test=0.399).
Yin et al. 2024 ¹⁰	China	50-99% sICAS	Anterior & posterior circulations	10	СТА	Generic	Generic LPM	Rigid, non-slip	Newtonian	Transient	PR	Significantly lower PR in patients with apparent hypoperfusion than those with normal perfusion defined in 4D CTA (means 0.38 vs. 0.76, p< 0.01).
Correlations with	ı stroke mecha	nisms in cross-sectio	onal studies									
Feng et al. 2023 ²¹	China	50-99% sICAS	Anterior circulation	99	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR、WSSR	High WSS was an independent predictor of artery-to-artery embolism (adjusted OR:3.90, 95%CI:1.22-12.47, p=0.022) in SICAS patients of anterior circulation with low PR (PR≤median).
Li et al. 2024 ²²	China	50-99% sICAS	Anterior circulation	84	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR	Low PR (PR≤median) was independently associated with internal borderzone infarcts (adjusted OR:4.22, p=0.026), but not cortical borderzone infarcts.
Correlations with	ı cerebral smal	ll vessel disease in cr	oss-sectional st	udy								

		Patient	Anterior/		Neurovascular		CFD model setup					
Study	Country	inclusion criteria	Posterior circulation	Number of cases	imaging modality	Inlet boundary condition	Outlet boundary condition	Vessel wall condition	Newtonian/ non-Newton ian blood	Steady vs Transient simulation	parameters in CFD model	Main findings on clinical implications
Zheng et al. 2024 ²⁴	China	50-99% sICAS	Anterior circulation	112	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR WSSR	Abnormal PR (PR≤median) and WSSR (WSSR≥fourth quartile) were associated with moderate-to-severe white matter hyperintensities (adjusted OR:10.12, p=0.018), cortical microinfarcts presence (adjusted OR:5.25, p=0.003), and moderate-to-severe cerebral small vessel disease burden (adjusted OR:12.55, p=0.033) in the ipsilateral hemisphere to sICAS.
Correlations with the risk of stroke recurrence in medically treated sICAS patients												
Leng et al. 2014 ¹⁴	China	70-99% sICAS	Anterior & posterior circulations	32	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR、SSR ratio、 Velocity ratio	Higher SSR ratio (HR:1.03, 95%CI:1.00-1.05, p=0.023) and higher velocity ratio (HR:1.03, 95%CI:1.00-1.06, p=0.035) were associated with recurrent ischemic stroke in the same-territory within 1 year.
Leng et al. 2019 ⁷	China	50-99% sICAS	Anterior & posterior circulations	245	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR、WSSR	Low PR (PR≤median, adjusted HR:3.16, 95%C1:1.15-8.72, p=0.026) and high WSSR (WSSR≥4th quartile, adjusted HR:3.05, 95%C1: 1.25-7.41, p=0.014), separately or combined, were independently associated with recurrent same-territory ischemic stroke within 1 year.
Tian et al. 2022 ²⁵	China	50-99% sICAS	Anterior & posterior circulations	245	СТА	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR、WSSR	A nomogram incorporating diabetes, dyslipidemia, hemodynamic significance (PR and WSR) of sICAS, hypertension and age ≥50 years could be a useful tool to stratify sICAS patients receiveing medical treatment for the risk of recurrent ischemic stroke in the same-territory.
Feng et al. 2020 ²⁶	China	50-99% sICAS	Anterior & posterior circulations	157	CTA ion therany	Generic	Generic	Rigid, non-slip	Newtonian	Steady	PR	Low (\leq 130mmHg) systolic blood pressure level (HR:5.08, 95%CI:1.05-24.49, p=0.043) may be associated with increased risk of recurrent stroke in the same-territory in sICAS with a large translesional pressure gradient.

		Patient	Anterior/	nterior/	Neurovascular		CFD model setup					
Study Coun	Country	ntry inclusion criteria	Posterior circulation	of cases	imaging modality	Inlet boundary condition	Outlet boundary condition	Vessel wall condition	Newtonian/ non-Newton ian blood	Steady vs Transient simulation	parameters in CFD model	Main findings on clinical implications
Wu et al. 2022 ²⁷ Changes of the he	China emodynamic pa	Patients receiving intravenous thrombolysis or acute endovascular treatment with 50-99% sICAS	Anterior circulation with stenting to	120 reatment	TOF-MRA	Generic	Patient-specif ic	Rigid, non-slip	Newtonian	Steady	PR. WSSR	WSSR before intravenous thrombolysis or acute endovascular treatment (OR:0.86, 95%CI:0.75-0.99, p=0.041) and difference in WSSR before and after such treatment (OR:0.72, 95%CI:0.52-1.03, p=0.043) were correlated with functional outcome at 3 months; Adding the two WSSR measures yielded higher predictive ability for the functional outcome, compared with prediction models including clinical variables only (p<0.05).
Zhang et al. 2022 ²⁸	China	70-99% sICAS	Anterior circulation	51	3DRA	Generic	Generic	Rigid, non-slip	Newtonian	Transient	Pressure, Velocity, Vorticity, WSS	Endovascular stent angioplasty could reduce the pressure loss (means 6.46 Pa vs. 12.84 Pa, p<0.001) across the sICAS lesion compared with that before stenting.
Zhou et al. 2023 ²⁹	China	70-99% sICAS	Posterior circulation	62	3DRA	Generic	Generic	Rigid, non-slip	Newtonian	Transient	Pressure、Velocity、 Vorticity、WSS	Significantly reduced WSS (means 14.84 Pa vs. 139.49 Pa, p<0.001) at the stenosis segment after stenting treatment.

sICAS, symptomatic intracranial atherosclerotic stenosis, symptomatic intracranial atherosclerosis; CTA, computed tomography angiography;

TOF-MRA, time of flight-magnetic resonance angiography; DSA, digital subtraction angiography; 3DRA, three-dimensional rotational

angiography; LPM, lumped parameter model; PR, pressure ratio; SSR, shear strain rate; WSSR, wall shear stress ratio; rWSS, relative wall shear

stress; WSS, wall shear stress; OR, odds ratio; CI, confidential interval; TCD, transcranial doppler ultrasound; HR, hazard ratio

Supplemental Table S4. Risk of bias assessment of 19 studies included in the systematic review using a modified Newcastle-Ottawa Scale

			Selection		Comparability		Outcome		
Study	Representativeness of the sample	Sample size	Assessment of sICAS	Demonstration of clinical implications of hemodynamic parameters	Comparability of studies on the basis of the design or analysis	Assessment of Outcome#	Was follow-up long enough for outcome to occur#	Adequacy of follow-up#	Risk of bias
Longitudinal	studies								
Leng et al. 2014 ²	*		*	*	*	*	*	*	7
Leng et al. 2019 ³	*	*	*	*	**	*	*	*	9
Feng et al. 2020 ⁴	*	*	*	*	*	*	*	*	8
Lan et al. 2020 ⁵	*		*	*	*	*	*	*	7
Zhang et al. 2022 ⁶	*		*	*		*		*	5
Wu et al. 2022 ⁷	*	*	*	*	*	*		*	7
Tian et al. 2022 ⁸	*	*	*	*	*	*	*	*	8
Zhou et al. 2023 ⁹	*		*	*		*		*	5
Cross-section:	al studies								
Nam et al. 2016 ¹⁰	*		*	*		_		—	3
Liu et al. 2017 ¹¹	*		*	*		—		—	3
Leng et al. 2018 ¹²	*		*	*	**	_	_	_	5
Lan et al. 2020 ¹³	*		*	*	*	—	—	—	4
Zhang et al. 2021 ¹⁴	*		*	*		_	—	_	3
Wang et al. 2023 ¹⁵	*		*	*		—	_	—	3
Raynald et al. 2023 ¹⁶	*		*	*		_		_	3
Feng et al. 2023 ¹⁷	*		*	*	**	_		_	5
Yin et al. 2024 ¹⁸	*		*	*		_		_	3

Zheng et al. 2024 ¹⁹	*	*	*	*	*			—	5
Li et al. 2024 ²⁰	*		*	*	*	—	—	—	4

sICAS, symptomatic intracranial atherosclerotic stenosis

#Not assessed in cross-sectional studies

Study	3D reconstruction	Mesh generation	Boundary condition setup & Simulation	Postprocessing
Leng et al. 2014 ²	Vascular Modeling Toolkit	ANSYS ICEM CFD	ANSYS CFX	ANSYS CFD-Post
Nam et al. 2016 ¹⁰	Unknown	ANSYS ICEM CFD	ANSYS CFX	Unknown
Liu et al. 2017 ¹¹	Mimics	ANSYS ICEM CFD	ANSYS CFX	Unknown
Leng et al. 2018 ¹²	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Leng et al. 2019 ³	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Lan et al. 2020 ¹³	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Feng et al. 2020 ⁴	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Lan et al. 2020 ⁵	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Zhang et al. 2021 ¹⁴	Mimics	ANSYS ICEM CFD	ANSYS Fluent	Unknown
Zhang et al. 2022 ⁶	Amira	Sharc Harpoon	ANSYS	Ensight
Wu et al. 2022 ⁷	Mimics	ANSYS ICEM CFD	ANSYS Fluent	CFD-Post

Study	3D reconstruction	Mesh generation	Boundary condition setup & Simulation	Postprocessing
Tian et al. 2022 ⁸	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Wang et al. 2023 ¹⁵	AccuFFicas	AccuFFicas	AccuFFicas	AccuFFicas
Raynald et al. 2023 ¹⁶	Mimics	ANSYS ICEM CFD	ANSYS CFX	Unknown
Feng et al. 2023	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Zhou et al. 2023 ⁹	Amira	Share Harpoon	ANSYS	Ensight
Yin et al. 2024 ¹⁸	Mimics	SimVascular	Unknown	Paraview
Zheng et al. 2024 ¹⁹	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post
Li et al. 2024 ²⁰	Mimics	ANSYS ICEM CFD	ANSYS CFX	CFD-Post

Supplemental Figure S1. Workflow of CFD modeling

CFD modeling for ICAS mostly involves the following steps: 1) Reconstruction of the arteries of interest from source images of neurovascular exams; 2) Generation of a mesh in the vessel lumen, wall and inlet/outlet; 3) Setup of boundary conditions on inlet/outlet and blood properties; 4) Simulation of blood flow by solving fluid dynamics equations; 5) Postprocessing of hemodynamic parameters.

Abbreviations: CFD, computational fluid dynamics; ICAS, intracranial atherosclerotic stenosis; 3D, three-dimensional

Appendix. The modified Newcastle-Ottawa Scale for risk of bias assessment of the longitudinal and cross-sectional studies included in the systematic review

Selection

1. Representativeness of the subjects:

- a. Truly representative of the target subjects. *
- b. Somewhat representative of the target subjects.
- c. Selected group of users.
- d. No description of the derivation of the included subjects.

2. Sample size:

- a. Sample size ≥100. *
- b. Sample size <100.

3. Assessment of sICAS:

- a. Standard assessment using imaging methods. *
- b. Non-standard imaging methods used.
- b. No description.

4. Demonstration of clinical implications of hemodynamic parameters

- a. Yes *
- b. No

Comparability

5. Comparability of studies on the basis of the design or analysis:

a. study controls for the most important cofounding factor (e.g., demographics like age

and sex). *

b. study controls for other confounding factors (other baseline characteristics, e.g.,

stenosis severity, leptomeningeal collateral status). *

Outcome

6. Assessment of Outcome[#]:

- a. Valid/reliable measurement. *
- b. Outcome data collected directly from the subjects.
- c. Method of outcome assessment not described.
- d. No description

7. Was follow-up long enough for outcome to occur[#]:

- a. At least 12 months of follow-up. *
- b. Less than 12 months of follow-up.
- c. Length of follow-up not reported.

8. Adequacy of follow-up[#]:

- a. No or small loss to follow-up. *
- b. Large amount of loss to follow-up.
- c. No statement.

#Not assessed in cross-sectional studies.

This scale for risk of bias assessment has been adapted from the Newcastle-Ottawa

Scale¹. For longitudinal study, the scale ranges from 0 to 9, with \geq 7 indicating low risk

of bias and < 6 indicating high risk of bias. For cross-sectional study, the scale ranges

from 0 to 6, with \geq 4 indicating low risk of bias and < 3 indicating high risk of bias.

Supplemental References

1 Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2010;25:603-5.

2 Leng X, Scalzo F, Ip HL, et al. Computational fluid dynamics modeling of symptomatic intracranial atherosclerosis may predict risk of stroke recurrence. *PLoS One* 2014;9:e97531.

3 Leng X, Lan L, Ip HL, et al. Hemodynamics and stroke risk in intracranial atherosclerotic disease. *Ann Neurol* 2019;85:752-64.

4 Feng X, Chan KL, Lan L, et al. Translesional Pressure Gradient Alters Relationship Between Blood Pressure and Recurrent Stroke in Intracranial Stenosis. *Stroke* 2020;51:1862-4.

5 Lan L, Liu H, Ip V, et al. Regional High Wall Shear Stress Associated With Stenosis Regression in Symptomatic Intracranial Atherosclerotic Disease. *Stroke* 2020;51:3064-73.

6 Zhang K, Ren W, Li TX, et al. Sub-satisfactory recanalization of severe middle cerebral artery stenoses can significantly improve hemodynamics. *Front Cardiovasc Med* 2022;9:922616.

7 Wu J, Wang P, Zhou L, et al. Hemodynamics derived from computational fluid dynamics based on magnetic resonance angiography is associated with functional outcomes in atherosclerotic middle cerebral artery stenosis. *Quant Imaging Med Surg* 2022;12:688-98.

19

8 Tian X, Fang H, Lan L, et al. Risk stratification in symptomatic intracranial atherosclerotic disease with conventional vascular risk factors and cerebral haemodynamics. *Stroke Vasc Neurol* 2022;8(1):77-85.

9 Zhou ZL, Zhu LF, Li TX, et al. Sub-satisfactory stenting recanalization of severe vascular stenosis of the posterior circulation can significantly improve cerebral hemodynamic perfusion. *Eur J Radiol* 2023;169:111135.

10 Nam HS, Scalzo F, Leng X, et al. Hemodynamic Impact of Systolic Blood Pressure and Hematocrit Calculated by Computational Fluid Dynamics in Patients with Intracranial Atherosclerosis. *J Neuroimaging* 2016;26:331-8.

11 Liu J, Yan Z, Pu Y, et al. Functional assessment of cerebral artery stenosis: A pilot study based on computational fluid dynamics. *J Cereb Blood Flow Metab* 2017:37:2567-76.

12 Leng X, Lan L, Ip HL, et al. Translesional pressure gradient and leptomeningeal collateral status in symptomatic middle cerebral artery stenosis. *Eur J Neurol* 2018;25:404-10.

13 Lan L, Leng X, Ip V, et al. Sustaining cerebral perfusion in intracranial atherosclerotic stenosis: The roles of antegrade residual flow and leptomeningeal collateral flow. *J Cereb Blood Flow Metab* 2020;40:126-34.

14 Zhang D, Wu X, Tang J, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis. *Eur Radiol* 2021;31:5234-42.

15 Wang M, Leng X, Mao B, et al. Functional evaluation of intracranial atherosclerotic stenosis by pressure ratio measurements. *Heliyon* 2023;9:e13527.

16 Raynald, Zhao X, Meng L, et al. A novel computational fluid dynamic method and validation for assessing distal cerebrovascular microcirculatory resistance. *Comput Methods Programs Biomed* 2023;230:107338.

17 Feng X, Fang H, Ip BYM, et al. Cerebral Hemodynamics Underlying Artery-to-Artery Embolism in Symptomatic Intracranial Atherosclerotic Disease. *Transl Stroke Res* 2023.

18 Yin Z, Zhou C, Guo J, et al. CT-derived fractional flow reserve in intracranial arterial stenosis: A pilot study based on computational fluid dynamics. *Eur J Radiol* 2024;171:111285.

19 Zheng L, Tian X, Abrigo J, et al. Hemodynamic significance of intracranial atherosclerotic disease and ipsilateral imaging markers of cerebral small vessel disease. *Eur Stroke J* 2024;9:144-53.

20 Li S, Tian X, Ip B, et al. Cerebral hemodynamics and stroke risks in symptomatic intracranial atherosclerotic stenosis with internal versus cortical borderzone infarcts: A computational fluid dynamics study. *J Cereb Blood Flow Metab* 2024;44:516-26.