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ABSTRACT
Background and aim  Recently, long-term outcomes in 
patients with spontaneous intracerebral haemorrhage 
(sICH) have gained increasing attention besides acute-
phase characteristics. Predictive models for long-term 
outcomes are valuable for risk stratification and treatment 
strategies. This study aimed to develop and validate an 
explainable model for predicting long-term recurrence 
and all-cause death in patients with ICH, using clinical and 
imaging markers of cerebral small vascular diseases from 
MRI.
Method  We retrospectively analysed data from a 
prospectively collected large-scale cohort of patients with 
acute ICH admitted to the Neurology Department of The 
Second Affiliated Hospital of Zhejiang University between 
November 2016 and April 2023. After comprehensive 
variable selection using least absolute shrinkage and 
selection operator and stepwise Cox regression, we 
constructed Cox proportional hazards models to predict 
recurrence and all-cause death. Model performance was 
evaluated using the concordance index, integrated Brier 
score and time-dependent area under the curve. Global 
and local interpretability were assessed using variable 
importance calculated as SurvSHAP(t) and SurvLIME 
methods for the entire training set and individual patients, 
respectively.
Results  A total of 842 eligible patients were included. 
Over a median follow-up of 36 months (IQR: 12–51), 86 
patients (9.1%) died, and 62 patients (6.6%) experienced 
recurrence of ICH. The concordance indexes for the all-
cause death and recurrence models were 0.841 (95% 
CI 0.767 to 0.913) and 0.759 (95% CI 0.651 to 0.867), 
respectively, with integrated Brier scores of 0.079 and 
0.063. The interpretability maps highlighted age, aetiology 
of ICH and low haemoglobin as key predictors of long-term 
death, while cortical superficial siderosis and previous 
haemorrhage were crucial for predicting recurrence.
Conclusions  This model demonstrates high predictive 
accuracy and emphasises the crucial factors in predicting 
long-term outcomes of patients with sICH.

INTRODUCTION
Spontaneous intracerebral haemorrhage 
(sICH) is one of the most devastating forms 
of stroke, accounting for approximately 
10–15% of all strokes.1 Despite advances 
in acute management, the poor prognosis 

remains. In addition to the mortality rate up 
to 50% within 30 days, the long-term recur-
rence rate, disability rate and mortality bring 
79.5 million disability-adjusted life years glob-
ally, accounting for nearly half of all types 
of stroke.2 3 Given these challenges, there is 
an urgent need for accurate and clinically 
applicable models that can predict long-
term outcomes in patients with ICH, to guide 
treatment decisions and to identify high-risk 
individuals requiring closer surveillance and 
stricter secondary preventive strategies.

The ICH score was proposed since 2001 as a 
prognosis model for patients with ICH. Based 
on several simple clinical variables, it has 
provided efficient short-term mortality risk 
stratification.4 Subsequent studies have modi-
fied the ICH score and improved its predic-
tive accuracy in these decades.5–7 Recently, 
with the surge of artificial intelligence (AI) 
algorithms, prognostic models have been 
developed to further improve predictive 
performance. But these AI-based prognostic 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Spontaneous intracerebral haemorrhage (sICH) is 
associated with high mortality, disability and recur-
rence rates, contributing significantly to the global 
burden of stroke. Existing prognostic models mainly 
focus on the prediction of short-term mortality but 
have limitations in predicting long-term outcomes.

WHAT THIS STUDY ADDS

	⇒ This study proposes an explainable predictive mod-
el for long-term death and recurrence in patients 
with sICH, using comprehensive clinical and MRI 
variables. It incorporates interpretability methods, 
such as SurvSHAP and SurvLIME, to enhance clinical 
usability.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The model offers a practical tool for clinicians to 
stratify long-term risk in patients with ICH and guide 
personalised management strategies.
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models are mostly aimed at acute phase. For instance, 
a machine learning algorithm that incorporates clinical 
variables such as age, National Institutes of Health Stroke 
Scale (NIHSS) score and haematoma volume achieved 
an area under the curve (AUC) of over 0.8 in predicting 
90-day outcomes for patients with ICH in the validation 
set.8 The prognostic performances of the two AI models 
combined with CT were developed and showed predic-
tion accuracy exceeding ICH score.9 10 However, models 
predicting long-term events are scarce. Additionally, small 
sample sizes, short follow-up or failure to include various 
variables such as the aetiology of ICH are becoming the 
major limitation to form a long-term perspective for 
patients with ICH.

One of the primary challenges in the clinical appli-
cation of prediction models is the ‘black box’ nature of 
algorithms.11 While these models often demonstrate high 
accuracy, their lack of interpretability makes it difficult for 
clinicians to understand the prediction process for indi-
vidual patients and to trust the model’s reliability. Given 
the complexity of ICH management, the development of 
explainable model is also crucial.

In this context, we proposed a clinically explain-
able predictive model for long-term death and recur-
rence in patients with sICH, using a prospective cohort 
from a tertiary stroke centre. Our model incorporates 
a comprehensive resource of clinical, imaging and aeti-
ological variables and provides interpretability through 
Survival SHapley Additive exPlanations (SurvSHAP) and 
Survival Local Interpretable Model-agnostic Explanations 
(SurvLIME).12

METHOD
Patient selection
The cohort included patients with ICH consecutively 
admitted to the Neurology Department of The Second 
Affiliated Hospital of Zhejiang University between 
November 2016 and April 2023. Eligible patients under-
went both CT and MRI during their hospitalisation. 
Patients were excluded if they had secondary ICH, modi-
fied Rankin Scale score ≥3 prior to the ICH, isolated 
intraventricular haemorrhage (IVH), or severe liver or 
renal disease. Additionally, patients using anticoagulants 
within 1 week prior to the ICH event were also excluded.

Data collection
Comprehensive clinical and laboratory data were 
extracted from the hospital’s electronic medical record 
system. Key variables included baseline assessments at 
admission, such as age, sex, Glasgow Coma Scale (GCS) 
and NIHSS score. Laboratory data encompassed blood 
routine examination, creatinine, fasting blood glucose, 
cholesterol, uric acid and coagulation function. Due 
to missing values in some laboratory factors (creati-
nine 7.24%, fasting blood glucose 7.60%, low-density 
lipoprotein-cholesterol 7.95% and uric acid 23.87%), 
multiple imputations using predictive mean matching 

method were performed using MICE package in R. 
Missing values were imputed using five datasets generated 
through iterative regression models, which considered 
correlations among variables. Visualisations of the distri-
bution of original and imputed values across five impu-
tation iterations were provided in online supplemental 
figure S1. Relevant medical history, including smoking 
and alcohol use, hypertension, diabetes, coronary artery 
disease, atrial fibrillation, ischaemic stroke or transient 
ischaemic attack, previous ICH and medication history, 
was collected. We also collected data on mechanical venti-
lation, severe pneumonia, heart failure and renal failure 
during hospitalisation, which were commonly associated 
with the poor prognosis.13 14 Imaging assessments involved 
the location and volume of haemorrhage, presence of 
ventricular or subarachnoid extension, cerebral microb-
leed (CMB) and cortical superficial siderosis (CSS). 
Two neurologists assessed the presence of CSS and the 
number of CMBs. The CSS was defined as a curvilinear 
signal loss on the susceptibility-weighted image (SWI) in 
compliance with the gyral cortical surface within the suba-
rachnoid space, away from at least two sulci of the haem-
orrhage with no corresponding signal hyperintensity on 
the baseline CT scan.15 The CMB was defined as round 
or ovoid signal voids between 2 and 10 mm in diameter, 
with associated blooming on the SWI sequences.16 CMB 
locations were categorised as lobar, deep structures (basal 
ganglia, thalamus and internal capsule), the brainstem or 
the cerebellum.17 The assessment of white matter hyper-
intensity (WMH) included both periventricular and deep 
regions. The severity of WMH was visually evaluated on 
axial fluid-attenuated inversion recovery sequence images 
using the Fazekas scale.18 The enlarged perivascular space 
was graded based on the number of dilated spaces in the 
contralateral centrum semiovale and deep regions, cate-
gorised into four grades: 0, 1–10, 11–20 and >20. Detailed 
protocols of variable collection have been described in our 
previous work.17 19 Aetiological classification was based on 
the SMASH-U system, which categorizes sICH into struc-
tural vascular abnormalities, medication-related, amyloid 
angiopathy (CAA), systemic disease, hypertension, and 
undetermined causes.20 As patients with secondary ICH 
were excluded, the classification was simplified into three 
categories: hypertensive vasculopathy, CAA and unde-
termined origin. Follow-up data were obtained through 
in-person or telephone interviews at regular intervals to 
determine patient survival and ICH recurrence. Termina-
tion of follow-up was defined as the last follow-up date 
before censoring, or the end of the longest 60-month 
follow-up period, or all-cause death.

Model development and testing
All patients were randomly divided into the training 
cohort (70%) and testing cohort (30%). The variable 
selection process was predefined. Initially, univariate 
Cox regression was performed to identify predictors 
with a p value <0.2. The least absolute shrinkage and 
selection operator (LASSO) regression and backward 
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stepwise regression were implemented for further selec-
tion. LASSO was based on the minimum lambda, while 
stepwise regression employed the Akaike information 
criterion (AIC) for model refinement. The details of vari-
able selection were presented in the online supplemental 
materials tables S1-6. The final set of variables was deter-
mined by integrating those selected from the LASSO 
and stepwise regression with key variables supported by 
published work. Using the training cohort, multivariable 
Cox proportional hazards models were trained to predict 
all-cause death and recurrence. Multicollinearity among 
variables was assessed using the variance inflation factor 
(VIF), with a VIF <5 indicating an absence of multicollin-
earity.

Model performance was evaluated in the testing 
cohort. Harrell’s concordance index (C-index) was used 
to present overall discriminative ability, while the inte-
grated Brier score presented overall calibration. Addi-
tionally, time-dependent receiver operating characteristic 
(ROC) curves and calibration curves were generated to 
visualise the model’s predictive performance at 1, 3 and 
5 years. The nomogram was constructed to represent the 
model’s predictive capacity graphically. We also provided 
a nomogram and time-dependent ROC curves for 1, 3 
and 6-month deaths in the online supplemental figures 
S2 and S3 to comprehensively evaluate the model’s 
performance for prediction of both short-term and long-
term deaths in patients with sICH.

To evaluate the robustness of our model, we conducted 
a temporal validation using patients admitted between 
April 2023 and May 2024 as an independent validation 
cohort. Due to the relatively short follow-up duration in 
the temporal validation cohort (maximum of 20 months), 
we evaluated the model’s performance specifically for 
predicting 1-year outcomes. Baseline characteristics and 
model performance on the temporal validation cohort 
are provided in the online supplemental table S7 and 
figure S4.

Model interpretability
To enhance the clinical interpretability of the model, 
we employed both global and local interpretability 
methods. For global interpretability across the training 
cohort, we applied time-dependent variable importance 
using the SurvSHAP(t) method.21 SurvSHAP(t) enabled 
the assessment of the significance of variables over time 
and offered insights into the overall feature influence 
on survival predictions. For local interpretability at the 
individual level, we used the SurvLIME method, which 
facilitates patient-specific prediction analysis by identi-
fying the influential features contributing to individual 
outcomes.22 This approach allows for a deeper under-
standing of personalised risk factors, thereby enhancing 
clinical decision-making.

Statistical analysis
Continuous variables that adhered to a normal distri-
bution were reported as mean±SD, while non-normally 

distributed data were presented as median and IQR. 
Comparisons between groups for continuous variables 
were performed using the t-test or Mann-Whitney U test. 
Categorical variables were summarised as percentages, 
with group differences analysed using Pearson’s χ² test 
or Fisher’s exact test as appropriate. Survival analysis was 
carried out with a Cox proportional hazards model, and 
the results were presented as HR with 95% CI. A two-
tailed p<0.05 was considered statistically significant.

Statistical analyses and visualisations were conducted 
using R software V.4.3.1 (R Foundation for Statistical 
Computing, Vienna, Austria). The R packages used 
included ‘survival’, ‘MASS’, ‘rms’, ‘glmnet’, ‘survminer’, 
‘riskRegression’, ‘timeROC’, ‘survex’, ‘ggplot2’ and 
‘VIM’.

RESULTS
Baseline characteristics
The baseline characteristics of the cohort are summarised 
in table 1. A total of 842 patients with primary ICH were 
included in the analysis, with 592 allocated to the training 
set and 250 to the testing set. The mean age was compa-
rable (61.4 years in the training set vs 60.3 years in the 
testing set, p=0.260) between groups, and the majority of 
patients were male (64.7% in the training set vs 63.2% 
in the testing set, p=0.738). Mortality rates (10.30% 
vs 10.00%, p=0.993) and recurrence rates (6.93% vs 
8.40%, p=0.546) were comparable between the two data-
sets. However, renal disease (6.00% vs 2.87%, p=0.049) 
and mean fasting blood glucose levels (6.56 mmol/L vs 
6.14 mmol/L, p=0.024) differed significantly between 
groups. Other variables, including GCS, coronary heart 
disease, coagulation, haematoma volume, location, CSS, 
CMBs and aetiology of ICH, showed no significant differ-
ences between training and testing datasets.

Variables predicting long-term all-cause death and ICH 
recurrence
Table  2 summarises the multivariate Cox models used 
to predict long-term all-cause death and ICH recur-
rence. In the all-cause death model, factors associated 
with an increased risk of death included advanced age 
(HR 1.07; 95% CI 1.04 to 1.10; p<0.001), coronary heart 
disease (HR 2.97; 95% CI 1.23 to 7.16; p=0.015), previous 
haemorrhage (HR 2.65; 95% CI 1.35 to 5.19; p=0.004), a 
higher burden of total CMBs (HR 1.02; 95% CI 1.01 to 
1.03; p<0.001), a lower haemoglobin level (HR 0.97; 95% 
CI 0.95 to 0.99; p=0.003) and intraventricular extension 
(HR 2.03; 95% CI 1.23 to 7.16; p=0.011). Patients with 
CAA (HR 2.42; 95% CI 1.32 to 4.43; p=0.004) or undeter-
mined aetiology (HR 3.55; 95% CI 1.76 to 7.17; p<0.001) 
had a significantly higher risk of death compared with 
hypertensive ICH.

In the ICH recurrence model, predictors of recurrent 
haemorrhage included a history of previous haemorrhage 
(HR 4.79; 95% CI 2.38 to 9.62; p<0.001), the presence of 
CSS (HR 3.63; 95% CI 1.88 to 6.99; p<0.001), a higher 
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Table 1  Baseline characteristics and outcomes in training and testing sets

Training data (n=592) Testing data (n=250) P value

Age (years), mean (SD) 61.4 (13.0) 60.3 (12.7) 0.260

Male, n (%) 383 (64.7) 158 (63.2) 0.738

Admission NIHSS, median (IQR) 4 (2–10) 4 (2–10) 0.992

Admission GCS, median (IQR) 15 (14–15) 15 (14–15) 0.828

ODT (hours), mean (SD) 8.68 (10.3) 8.68 (10.3) 1.000

Hypertension, n (%) 450 (76.0) 192 (76.8) 0.876

Diabetes, n (%) 43 (17.2) 91 (15.4) 0.576

Atrial fibrillation, n (%) 8 (1.35) 9 (3.60) 0.064

Coronary heart disease, n (%) 25 (4.22) 8 (3.20) 0.614

Previous intracerebral haemorrhage, n (%) 47 (7.94) 14 (5.60) 0.293

AIS/TIA, n (%) 56 (9.46) 29 (11.6) 0.414

Renal disease, n (%) 17 (2.87) 15 (6.00) 0.049

Antiplatelet use, n (%) 61 (10.3) 25 (10.0) 0.993

Statin use, n (%) 44 (7.43) 17 (6.80) 0.859

Smoke, n (%) 191 (32.3) 85 (34.0) 0.682

Drink, n (%) 196 (33.1) 71 (28.4) 0.208

INR, mean (SD) 1.02 (0.39) 1.00 (0.09) 0.413

Platelet (×109/L), mean (SD) 199 (64.7) 206 (68.6) 0.180

Haemoglobin (g/L), mean (SD) 138 (16.6) 139 (16.4) 0.413

White blood cell (×109/L), mean (SD) 8.50 (2.90) 8.36 (2.67) 0.487

Total cholesterol (μmol/L), mean (SD) 4.71 (1.04) 4.65 (1.02) 0.389

LDL-cholesterol (μmol/L), mean (SD) 2.48 (0.78) 2.46 (0.69) 0.661

FBG (mmol/L), mean (SD) 6.14 (1.93) 6.56 (2.62) 0.024

Uric acid (μmol/L), mean (SD) 283 (104) 284 (106) 0.958

Creatinine (μmol/L), mean (SD) 74.8 (98.4) 83.2 (121) 0.334

Mechanical ventilation, n (%) 6 (0.8) 2 (1.01) 1.000

Severe pneumonia, n (%) 8 (1.35) 4 (1.60) 0.757

Heart failure, n (%) 9 (1.52) 4 (1.60) 1.000

Renal failure, n (%) 21 (3.55) 14 (5.60) 0.240

OMT (day), mean (SD) 5.39 (3.01) 5.34 (2.88) 0.794

Haematoma volume (mL), mean (SD) 12.8 (13.3) 12.6 (12.7) 0.870

Haematoma location, n (%) 0.664

 � Lobar 116 (19.6) 47 (18.8)  �

 � Deep 396 (66.9) 157 (62.8)  �

 � Cerebellum 38 (6.42) 21 (8.40)

 � Brainstem 49 (8.28) 29 (11.6)  �

Intraventricular extension, n (%) 160 (27.0) 74 (29.6) 0.498

Subarachnoid extension, n (%) 51 (8.61) 23 (9.20) 0.888

Cerebral microbleeds, mean (SD)  �   �   �

 � Lobar 3.56 (9.39) 3.30 (10.1) 0.729

 � Deep 2.73 (5.24) 2.62 (4.28) 0.742

 � Cerebellum 0.55 (1.66) 0.74 (2.70) 0.285

 � Brainstem 0.75 (1.71) 0.62 (1.47) 0.259

 � Total 7.59 (14.3) 7.28 (14.6) 0.780

Cortical superficial siderosis, n (%) 114 (19.3) 41 (16.4) 0.379

Continued
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burden of lobar CMBs (HR 1.02; 95% CI 1.00 to 1.04; 
p=0.041) and a lower haemoglobin level (HR 0.98; 95% 
CI 0.95 to 0.99; p=0.019).

Model performance
The performance metrics of the predictive models were 
summarised in table  3. For the prediction of all-cause 
death within 5 years, the model achieved a C-index of 
0.830 (95% CI 0.883 to 0.776) in the training set and 
0.841 (95% CI 0.767 to 0.913) in the testing set, indicating 
strong discriminative ability. The integrated Brier scores 
were 0.069 and 0.079 for the training and testing sets, 
respectively. Time-dependent AUCs at 1, 3 and 5 years 
in the testing set were 0.821 (95% CI 0.729 to 0.913), 
0.845 (95% CI 0.748 to 0.942) and 0.892 (95% CI 0.810 
to 0.974), respectively (figure 1). The recurrence model 
demonstrated a C-index of 0.740 (95% CI 0.832 to 0.648) 

in the training set and 0.759 (95% CI 0.651 to 0.867) in 
the testing set, with integrated Brier scores of 0.058 and 
0.063, respectively. Time-dependent AUCs for recurrence 
at 1, 3 and 5 years in the testing set were 0.808 (95% 
CI 0.642 to 0.973), 0.780 (95% CI 0.643 to 0.918) and 
0.789 (95% CI 0.657 to 0.921), respectively. Calibration 
curves (figure  2) indicated good concordance between 
predicted and observed outcomes for both all-cause death 
and recurrence models. Nomograms were developed 
(figure 3) to facilitate clinical decision-making, enabling 
individualised predictions of survival and ICH recurrence 
at 1, 3 and 5 years based on key prognostic variables.

Feature importance and model interpretability
To enhance model interpretability, both global and 
local feature importance were assessed. The results were 
visualised in figures 4 and 5. Global feature importance 

Training data (n=592) Testing data (n=250) P value

PWMH, n (%)  �   �  0.360

 � None 223 (37.7) 90 (36.0)  �

 � Fazekas I 144 (24.3) 63 (25.2)  �

 � Fazekas II 111 (18.8) 58 (23.2)  �

 � Fazekas III 114 (19.3) 39 (15.6)  �

DWMH, n (%)  �   �  0.792

 � None 275 (46.5) 115 (46.0)  �

 � Fazekas I 174 (29.4) 81 (32.4)  �

 � Fazekas II 86 (14.5) 33 (13.2)  �

 � Fazekas III 57 (9.63) 21 (8.40)  �

PEPVS, n (%)  �   �  0.275

 � None 368 (62.2) 162 (64.8)  �

 � 1–10 158 (26.7) 63 (25.2)  �

 � 11–20 39 (6.59) 20 (8.00)  �

 � Over 20 27 (4.56) 5 (2.00)  �

DEPVS, n (%)  �   �  0.432

 � None 203 (34.3) 94 (37.6)  �

 � 1–10 252 (42.6) 92 (36.8)  �

 � 11–20 87 (14.7) 38 (15.2)  �

 � Over 20 50 (8.45) 26 (10.4)  �

Aetiology, n (%)  �   �  0.943

 � Amyloid angiopathy 94 (15.9) 38 (15.2)  �

 � Hypertension 380 (64.2) 160 (64.0)  �

 � Undetermined 118 (19.9) 52 (20.8)  �

Death, n (%) 61 (10.3) 25 (10.0) 0.993

Recurrent ICH, n (%) 41 (6.93) 21 (8.40) 0.546

Follow-up time (days), median (IQR) 36 (12–51) 36 (12–49) 0.945

AIS, acute ischaemic stroke; DEPVS, deep enlarged perivascular spaces; DWMH, deep white matter hyperintensities; FBG, fasting blood 
glucose; GCS, Glasgow Coma Scale; ICH, intracerebral haemorrhage; INR, international normalised ratio; LDL, low-density lipoprotein; 
NIHSS, National Institutes of Health Stroke Scale; ODT, onset to door time; OMT, onset to MRI time; PEPVS, periventricular enlarged 
perivascular spaces; PWMH, periventricular white matter hyperintensities; TIA, transient ischaemic attack.

Table 1  Continued
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was assessed via SurvSHAP values, showing that in the 
all-cause death model, age, aetiology of ICH and admis-
sion haemoglobin were consistently the most influential 
factors, significantly impacting mean SurvSHAP values 
throughout the follow-up period. In the recurrence 
model, previous haemorrhage, haemoglobin and CSS 
were identified as key predictors. Local interpretability 
methods enable the model to predict individual outcomes 
and assess how specific factors impact each patient’s 
survival, sometimes uncovering unexpected differences. 

As shown in figure 5, if haemoglobin is identified as a key 
predictor, clinicians may prioritise anaemia correction. 
Similarly, if prior haemorrhage is recognised as a risk 
factor, stricter blood pressure control or closer follow-up 
may be necessary.

DISCUSSION
In the present study, we developed robust and explain-
able models using a large dataset to predict long-term 

Table 2  Multivariate models for predicting all-cause death and recurrent ICH in patients with spontaneous haemorrhage

Variable Coefficient HR (95% CI) P value VIF

Cox model for predicting all-cause death within 5 years

Age 0.069 1.072 (1.045, 1.099) <0.001 1.197

Aetiology 1.339

 � Hypertension Ref Ref Ref

 � Amyloid angiopathy 0.884 2.421 (1.323, 4.431) 0.004

 � Undetermined 1.268 3.554 (1.762, 7.170) <0.001

Coronary heart disease 1.088 2.967 (1.229, 7.160) 0.015 1.087

Previous haemorrhage 0.973 2.645 (1.348, 5.190) 0.004 1.063

Haemoglobin −0.028 0.972 (0.954, 0.990) 0.003 1.228

Total CMB 0.021 1.021 (1.013, 1.029) <0.001 1.191

IVH extension 0.710 2.034 (1.229, 7.157) 0.011 1.110

Cox model for predicting recurrence of ICH within 5 years

Prior haemorrhage 1.566 4.786 (2.382, 9.618) <0.001 1.116

Haemoglobin −0.023 0.977 (0.958, 0.996) 0.019 1.073

Lobar CMB 0.019 1.020 (1.001, 1.039) 0.041 1.105

Cortical superficial siderosis 1.289 3.629 (1.884, 6.989) <0.001 1.128

CMB, cerebral microbleed; ICH, intracerebral haemorrhage; IVH, intraventricular haemorrhage; VIF, variance inflation factor.

Table 3  Models’ performance for prediction of sICH all-cause death and recurrence

Performance metrics Training data Test data

Cox model for predicting all-cause death within 5 years

Concordance index 0.830 (0.883, 0.776) 0.841 (0.767, 0.913)

Integrated Brier score 0.069 0.079

Time-dependent AUC

 � 1 year 0.880 (0.805, 0.955) 0.821 (0.729, 0.913)

 � 3 years 0.869 (0.815, 0.923) 0.845 (0.748, 0.942)

 � 5 years 0.814 (0.737, 0.890) 0.892 (0.810, 0.974)

Cox model for predicting recurrence of ICH within 5 years

Concordance index 0.740 (0.832, 0.648) 0.759 (0.651, 0.867)

Integrated Brier score 0.058 0.063

Time-dependent AUC

 � 1 year 0.782 (0.658, 0.907) 0.808 (0.642, 0.973)

 � 3 years 0.751 (0.649, 0.853) 0.780 (0.643, 0.918)

 � 5 years 0.749 (0.647, 0.850) 0.789 (0.657, 0.921)

AUC, area under the curve; sICH, spontaneous intracerebral haemorrhage.
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Figure 1  Time-dependent receiver operating characteristic (ROC) curves for predicting spontaneous intracerebral 
haemorrhage (sICH) all-cause death and recurrence. AUC, area under the curve.

Figure 2  Calibration curves for predicting spontaneous intracerebral haemorrhage (sICH) all-cause death and recurrence.
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Figure 3  Nomogram for predicting long-term all-cause death and recurrence in patients with spontaneous intracerebral 
haemorrhage (sICH). CAA, cerebral amyloid angiopathy; CMB, cerebral microbleed; CSS, cortical superficial siderosis; IVH, 
intraventricular haemorrhage.
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outcomes in patients with sICH with high accuracy and 
reliability. Our findings highlight that the aetiology of 
ICH, small vessel disease markers and haemoglobin levels 
were critical variables for models’ performance. These 
models hold promise for stratifying long-term mortality 
and recurrence risks in patients with ICH, offering signifi-
cant potential for optimising management and treatment 
strategies.

The variable selection process combined stepwise 
regression and LASSO, balancing the strengths and 
limitations of regularisation techniques and AIC. This 
approach minimised biases with using a single selec-
tion method within a single-centre dataset.23 To prevent 
overfitting, we controlled the number of variables by 
excluding those with collinearity based on the VIF. 

This strategy enhanced predictive efficiency, ensuring 
a concise yet powerful set of variables, thus maximising 
clinical utility. The present model demonstrated strong 
concordance and calibration, maintaining robustness on 
testing. This can be attributed to two key factors: the rela-
tively large sample size, facilitating accurate parameter 
estimation, and the rigorous variable selection. However, 
the incidence of outcomes in the dataset was lower than 
reported in previous studies, likely due to the relatively 
mild conditions of our ICH cohort.24 The lower inci-
dence of outcomes, particularly for recurrence, led to an 
overestimation of individual risk, reflected by an elevated 
false-positive rate in the calibration curve.

In recent years, research on the ICH prognosis has 
primarily focused on outcomes within the first 3 months. 

Figure 4  Global explanation for predicting long-term all-cause death and recurrence on training data. The one on the left 
presented overall importance of variables based on mean absolute SurvSHAP(t) value; longer bars indicate greater contribution 
to the prediction, with age being the most important factor for all-cause death and cortical superficial siderosis (CSS) for 
spontaneous intracerebral haemorrhage (sICH) recurrence. The right panels demonstrated the time-dependent feature 
importance of each variable based on the value at each time point across all observations, showing the trend of the importance 
of each variable over time. CMB, cerebral microbleed; IVH, intraventricular haemorrhage.
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Published models often incorporated variables such as 
age, IVH and haematoma volume, achieving C-statis-
tics ranging from 0.7 to 1.0, with an average of approx-
imately 0.88.8 25 26 However, few studies have explored 
long-term outcomes in the sICH population. Short-term 
mortality is often associated with acute-phase injuries 
and complications, while long-term mortality reflects a 
broader interplay of factors, including baseline health 
and chronic conditions.24 Despite these differences, 
predicting long-term outcomes remains crucial for strat-
ifying risk early and guiding clinical decision-making, 
which can help identify patients who may benefit from 
intensive rehabilitation, closer monitoring or preventa-
tive interventions targeting complications like recurrent 
haemorrhage. Baseline variables at admission, such as 
age, GCS and haematoma volume, remain critical predic-
tors of long-term outcomes as they reflect the overall 
severity of ICH and patient health status. A recent study 
involving a training cohort of 480 patients used age, GCS 
and hydrocephalus secondary to IVH to predict 5-year 
mortality, achieving a concordance index of 0.76, which 
is lower than the performance of our proposed model.27 
Compared with previous studies, our research analysed a 
larger cohort and expanded the scope of model variables, 
incorporating both clinical characteristics and cerebral 
small vessel disease markers on MRI.28 29 These markers 
better reflect the severity of vascular damage. Our model 
achieved time-dependent AUCs exceeding 0.8 for 1, 3 
and 5-year mortality predictions in both the training and 

testing sets, with low integrated Brier scores, demon-
strating satisfactory discrimination and calibration. More 
importantly, the use of visualisation tools enhances the 
model’s interpretability, facilitating its potential applica-
tion in clinical practice.

To enhance interpretability, we employed SurvSHAP 
and SurvLIME for global and local feature importance 
assessment, visualised in figures  4 and 5. Global inter-
pretation using SurvSHAP identified age, aetiology and 
admission haemoglobin levels as the most influential 
predictors in the all-cause mortality model, consistent 
with findings from previous studies.2 5 24 The aetiology of 
ICH emerged as a crucial factor in prognosis, with CAA-
related or undetermined aetiologies exhibiting a higher 
risk of long-term mortality compared with hyperten-
sive ICH. This aligns with previous studies showing that 
haemorrhages caused by medication, CAA or systemic 
disease, as classified by the SMASH-U system, are associ-
ated with poorer outcomes due to factors such as older 
age, higher stroke recurrence and poorer overall health 
conditions.20 30 31 The system of ICH aetiology has been 
regarded as significantly enhancing the predictive ability 
of the max-ICH score.31 In our cohort, similar findings 
were observed. According to the mean SurvSHAP values, 
the aetiology of ICH emerged as a key predictor of all-
cause death. The total CMB burden, an indicator of 
deteriorated small cerebrovascular condition, was also 
an independent predictor of all-cause death. Notably, 
our model introduced admission haemoglobin levels 

Figure 5  Local explanation: feature importance map based on SurvLIME for a single patient. Longer bars indicate greater 
contribution to the prediction. Green bars indicate factors associated with higher risk while red bars indicate protective effects. 
The top-left and top-right panels represent patients who died at 36 and 4 months of follow-up, respectively. The bottom-left 
and bottom-right panels depict patients who experienced intracerebral haemorrhage (ICH) recurrence at 4 and 2 months, with 
haemoglobin and cortical superficial siderosis (CSS) identified as the key predictive factors for recurrence in these two patients. 
CMB, cerebral microbleed; IVH, intraventricular haemorrhage.
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as a predictor, a novel addition supported by growing 
evidence linking lower haemoglobin concentrations with 
poorer outcomes after stroke. Low haemoglobin may 
contribute to secondary brain injury through reduced 
oxygen delivery, metabolic disruption and impaired 
cellular energy processes.32 33 Other studies have associ-
ated low haemoglobin with haematoma expansion and 
increased small vessel damage, further elevating mortality 
and recurrent risks.34 35 Haemoglobin was shown to be a 
predictor of comparable importance to intraventricular 
extension, according to interpretability maps. For ICH 
recurrence, CSS and lobar CMBs, both markers of CAA, 
were strong predictors, likely due to increased vascular 
fragility caused by β-amyloid deposition.36 37 The local 
SurvLIME method provides interpretability by quanti-
fying individual risk factors and can be seamlessly inte-
grated into clinical workflows. It offers visualisations of key 
prognostic factors, helping clinicians effectively stratify 
patient mortality risk and develop personalised manage-
ment plans. For instance, identifying haemoglobin as a 
dominant factor may prompt timely anaemia interven-
tion, while prior haemorrhage may require enhanced 
secondary prevention.

This study has several limitations. It is a single-centre 
study, introducing potential selection bias. Patients 
included in this cohort were those hospitalised in the 
neurology department and capable of undergoing MRI, 
which indicates relatively mild ICH cases. This may partly 
explain the higher survival rates observed in our cohort 
compared with previous studies.24 28 Moreover, acute-
phase complications, such as severe pneumonia and 
organ failure, which are known predictors of poor short-
term outcomes, were infrequent in our cohort.13 14 As a 
result, these variables could not be incorporated as robust 
predictors in our model. These biases reflect the limita-
tion in the generalisability of our findings to severe cases. 
Second, while the proposed model demonstrated robust 
predictive performance on the testing set, the lack of 
multicentre external validation remains a key limitation. 
Future work will focus on external validation using multi-
centre cohorts, incorporating a broader range of ICH 
severity. Additionally, recalibration with external datasets 
featuring higher outcome incidence could address the 
overestimation of risks observed in the calibration curves. 
Prospective validation in real-world clinical settings will 
also be essential to further confirm the model’s reliability 
and applicability. Our predictions rely solely on admis-
sion data, which may not fully capture the complexity of 
long-term outcomes. For instance, dynamic changes in 
blood pressure and follow-up MRI findings of small vessel 
disease markers may also be associated with the prog-
nosis of sICH.38 However, collecting dynamic data poses 
significant challenges in practice, requiring collabora-
tion across teams and sufficient resources. Future large-
scale, multicentre cohort studies could explore the use of 
time-dependent predictors to refine prediction models. 
Finally, this study primarily focused on baseline clinical 
and imaging features, without explicitly accounting for 

clinical management strategies, such as intensive blood 
pressure control, mannitol use and surgical interven-
tions. These interventions can potentially influence ICH 
outcomes by preventing haematoma expansion and alle-
viating intracranial hypertension.39 40 However, the effec-
tiveness and timing of these treatments can vary widely 
depending on individual patient characteristics and clin-
ical settings. Quantifying their impact on prognosis within 
observational studies remains a significant challenge.

CONCLUSION
In conclusion, our explainable models demonstrate 
substantial clinical applicability for predicting long-term 
death and recurrence in patients with spontaneous intrac-
erebral haemorrhagesICH. The integration of interpret-
able methods strengthens the model’s utility by providing 
visualisations of individual predictions, enabling clini-
cians to make more appropriate and personalised treat-
ment decisions. For improved accuracy, future studies 
should aim to include a larger sample size and a more 
diverse range of haemorrhage. Additionally, prospective 
validation in real-world clinical settings will be essential to 
confirm the model’s robustness and generalisability.
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