
    1Fontanella A, et al. Stroke & Vascular Neurology 2024;0. doi:10.1136/svn-2024-003372

Open access�

Development of a deep learning method 
to identify acute ischaemic stroke 
lesions on brain CT
Alessandro Fontanella  ‍ ‍ ,1 Wenwen Li,2 Grant Mair  ‍ ‍ ,2 Antreas Antoniou,1 
Eleanor Platt,1 Paul Armitage,3 Emanuele Trucco,4 Joanna M Wardlaw  ‍ ‍ ,2,5 
Amos Storkey1

1The University of Edinburgh 
School of Informatics, 
Edinburgh, UK
2The University of Edinburgh 
Centre for Clinical Brain 
Sciences, Edinburgh, UK
3The University of Sheffield 
School of Medicine and 
Biomedical Sciences, Sheffield, 
UK
4University of Dundee School 
of Science and Engineering, 
Dundee, UK
5UK Dementia Research 
Institute, Edinburgh, UK

Correspondence to
Alessandro Fontanella;  
​A.​Fontanella@​sms.​ed.​ac.​uk

To cite: Fontanella A, Li W, 
Mair G, et al. Development of a 
deep learning method to identify 
acute ischaemic stroke lesions 
on brain CT. Stroke & Vascular 
Neurology 2024;0. doi:10.1136/
svn-2024-003372

	► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (https://​doi.​org/​10.​1136/​
svn-​2024-​003372).

AF, WL and GM contributed 
equally.

Received 4 May 2024
Accepted 2 November 2024

Original research

© Author(s) (or their 
employer(s)) 2024. Re-use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Background  CT is commonly used to image patients with 
ischaemic stroke but radiologist interpretation may be 
delayed. Machine learning techniques can provide rapid 
automated CT assessment but are usually developed from 
annotated images which necessarily limits the size and 
representation of development data sets. We aimed to 
develop a deep learning (DL) method using CT brain scans 
that were labelled but not annotated for the presence of 
ischaemic lesions.
Methods  We designed a convolutional neural network-
based DL algorithm to detect ischaemic lesions on CT. Our 
algorithm was trained using routinely acquired CT brain 
scans collected for a large multicentre international trial. 
These scans had previously been labelled by experts for 
acute and chronic appearances. We explored the impact of 
ischaemic lesion features, background brain appearances 
and timing of CT (baseline or 24–48 hour follow-up) on DL 
performance.
Results  From 5772 CT scans of 2347 patients (median 
age 82), 54% had visible ischaemic lesions according 
to experts. Our DL method achieved 72% accuracy in 
detecting ischaemic lesions. Detection was better for larger 
(80% accuracy) or multiple (87% accuracy for two, 100% 
for three or more) lesions and with follow-up scans (76% 
accuracy vs 67% at baseline). Chronic brain conditions 
reduced accuracy, particularly non-stroke lesions and old 
stroke lesions (32% and 31% error rates, respectively).
Conclusion  DL methods can be designed for ischaemic 
lesion detection on CT using the vast quantities of 
routinely collected brain scans without the need for lesion 
annotation. Ultimately, this should lead to more robust and 
widely applicable methods.

INTRODUCTION
Non-contrast-enhanced CT is the most 
commonly used brain imaging modality for 
stroke assessment in the acute setting due 
to its availability and speed.1 While brain CT 
in this context is primarily used to identify 
haemorrhage and other contraindications to 
thrombolytic therapy (eg, structural stroke 
mimics such as brain tumour) rather than to 
identify ischaemia, positive detection of an 
ischaemic lesion confirms the diagnosis and 
may improve implementation of thrombol-
ysis and thrombectomy treatment pathways. 

Accurate identification of ischaemic features 
on CT can be challenging and depends on 
the reviewing clinicians experience (eg, 
stroke clinician vs radiologist vs trainees)2 and 
the scan timing (ischaemic lesions become 
more visible with time). Computer-aided 
diagnosis may reduce delays, improve consist-
ency of image interpretation3 and increase 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Previous studies focusing on ischaemic stroke de-
tection from CT scans employed other imaging mo-
dalities such as diffusion-weighted MRI in addition 
to CT to help identify lesions or were developed from 
annotated images, limiting data set size and repre-
sentation. Thus, we identified the need for a study 
employing routinely-acquired CT scans alone as the 
most frequently used imaging modality in emergen-
cy clinical settings for acute stroke treatment.

WHAT THIS STUDY ADDS

	⇒ Our study presents a deep learning (DL) method 
for detecting ischaemic lesions on CT scans that 
was developed using a large data set of routinely 
collected, expert-labelled (but not annotated) brain 
scans from over 3000 patients within 6 hours of 
acute stroke onset. By leveraging this extensive data 
set, we were able to better explore the capabilities 
of DL for CT interpretation using large numbers of 
routinely collected scans. The method achieved 72% 
accuracy in detecting ischaemic lesions, performing 
better on follow-up scans compared with baseline 
scans and with better detection of larger lesions 
compared with smaller ones in alignment with hu-
man diagnostic behaviour.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This approach demonstrates the potential to develop 
robust and widely applicable DL systems from large 
numbers of routinely collected scans, better repre-
senting real-life patients with natural heterogeneity.

	⇒ Such systems could ultimately provide more accu-
rate and timely image interpretation for patients with 
acute ischaemic stroke, potentially improving treat-
ment decisions and outcomes.
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treatment success.4 However, current techniques are still 
in development.5 While there are several commercially 
available systems that predict features or provide clin-
ical scores from a brain CT scan for stroke6 such as the 
Alberta Stroke Programme Early CT Score (ASPECTS),7 
to the best of our knowledge these systems were devel-
oped using annotated images which (due to the effort 
required to produce these annotations, ie, to draw round 
the lesions) necessarily limits the size (and representative-
ness) of the imaging data set used for development. In 
addition, the precision of such annotations is not known 
but must directly affect the quality of future lesion detec-
tion using the system.

In this study, we aim to develop a deep learning (DL) 
method for acute ischaemic stroke lesion diagnosis using 
a large data set of routinely collected brain CT scans 
from an international multicentre clinical trial where 
expert readers have labelled the scans for ischaemic 
lesion presence, location and extent (and for various 
other acute and chronic brain features), without annota-
tions. In other words, rather than indicating exactly what 
to look for in images, we allow the DL methodology to 
independently assess thousands of features within scans 
that may correctly indicate the presence of an ischaemic 
lesion. We also explore the interpretability of our model, 
the impact of different ischaemic lesion sizes and back-
ground conditions on its performance and quantify its 
agreement with the assessment of expert radiologists.

METHODS
Data source and expert labelling of imaging data
We used CT data from the Third International Stroke 
Trial (IST-3)8 9 which was a randomised controlled trial 
of intravenous alteplase for patients with acute ischaemic 
stroke. The study recruited 3035 patients and baseline 
CT brain imaging was acquired within 6 hours of stroke 
onset followed by a 24–48 hour follow-up CT for most 
patients (those that survived and were well enough to be 
reimaged). All patients recruited in IST-3 were screened 
by experts using all available data including imaging to 
confirm the presence of genuine ischaemic stroke and to 
exclude haemorrhage or stroke mimics.

The IST-3 imaging data set consists of raw CT data in 
DICOM (Digital Imaging and Communications in Medi-
cine) format which were obtained from 156 different 
hospitals in 12 countries worldwide. The recruiting 
hospitals were instructed to submit all relevant imaging 
for each patient acquired according to their own stroke 
imaging protocols with only minimal basic requirements 
imposed by the trial. Therefore, the IST-3 CT data set is 
similar to the imaging acquired during routine clinical 
care.

All brain scans were centrally assessed by a single expert 
drawn from a panel of 10 and who had undergone prior 
assessment for consistency (inter-rater agreement>kappa 
0.78). The experts were masked to all other data except 
whether scans were acquired at baseline or follow-up. 

They provided labelling for a range of acute and chronic 
brain changes related to stroke including acute ischaemic 
brain lesions,10 11 acute arterial obstruction (on non-
enhanced CT, presence of a hyperattenuating artery12), 
and at follow-up acute haemorrhage, all quantified by 
location and extent (1–4 with 1 being smallest and 4 the 
largest) using clinically validated methods. In particular, 
the algorithm used to classify the different lesions can 
be found in Appendix 5 of the IST-3 data set description 
(https://datashare.ed.ac.uk/bitstream/handle/10283/​
1931/DescriptionofIST3SharedDatasetAugust2015.pdf) 
. The IST-3 has developed a comprehensive algorithm 
for coding lesion location and size, widely used in acute 
stroke trials which takes into account various factors such 
as the affected brain regions, infarct type and extent. 
The schema identifies the vascular territory and extent 
of involved tissue using hierarchical numbers and reflects 
typical patterns of infarcts commonly seen in acute isch-
aemic stroke. The method aligns with other commonly 
used visual scoring systems such as ASPECTS,2 although 
has the advantage of classifying all vascular territories (not 
just the middle cerebral artery (MCA)) indicating the 
location and extent of the lesion (not just the extent) and 
reflecting the likely site of arterial occlusion. The numbers 
reflect the relative extent of the affected arterial territory 
or combinations of territories but do not correspond to 
absolute volumes of tissue. Ischaemic brain lesion loca-
tion was divided into seven anatomical categories relating 
to arterial blood supply and lesion type: Major arterial 
territories of cerebral hemispheres (three categories—
anterior, middle and posterior cerebral—ACA, MCA and 
PCA, respectively), cerebral border zones (one category), 
posterior circulation (two categories) and lacunar (one 
category). The experts also assessed and labelled scans for 
chronic brain changes,13 such as atrophy, leukoaraiosis, 
old stroke lesions and other benign incidental abnormal-
ities which may impact the expert or DL assessment of 
the imaging. All expert assessment was stored separately 
for imaging as text, that is, the presence and location of 
abnormalities were not annotated directly on imaging, 
see the online supplemental figure 1.

Preprocessing of CT scans
We previously developed a pipeline to clean and preprocess 
clinical CT data for DL development.14 The pipeline 
included several preprocessing steps such as identifying 
axial images, converting DICOM data to Neuroimaging 
Informatics Technology Initiative format,15 removing 
localisers and poor-quality scans, cropping redundant 
space and normalising image brightness. To account for 
varying slice numbers, a uniform sampling approach was 
applied, selecting 11 slices from each scan. The processed 
scans were standardised to the dimensions of 500×400×11 
(height, width and slice number).

DL method
Our goal was to classify CT brain scans as either having 
an ischaemic lesion (positive) or not (negative) and, if 

 on M
ay 4, 2025 by guest. P

rotected by copyright.
http://svn.bm

j.com
/

S
troke V

asc N
eurol: first published as 10.1136/svn-2024-003372 on 20 N

ovem
ber 2024. D

ow
nloaded from

 

https://datashare.ed.ac.uk/bitstream/handle/10283/1931/Description%20of%20IST3%20Shared%20Dataset%20August%202015.pdf
https://datashare.ed.ac.uk/bitstream/handle/10283/1931/Description%20of%20IST3%20Shared%20Dataset%20August%202015.pdf
https://dx.doi.org/10.1136/svn-2024-003372
http://svn.bmj.com/


� 3Fontanella A, et al. Stroke & Vascular Neurology 2024;0. doi:10.1136/svn-2024-003372

Open access

positive, to predict which side of the brain is affected 
(left, right or both). To study the impact of lesion loca-
tion on the accuracy of the model, we also compared the 
performance of our method across different regions of 
the brain.

To achieve this, we employed PyTorch to design a DL 
method using a multitask learning (MTL) convolutional 
neural network (CNN) with two heads and seven convo-
lutional layers. We divided our data set into training, vali-
dation and test sets using a 70-15-15 split with all the scans 
of each patient appearing in only one data set.

We trained the algorithm to learn acute lesion features 
from each side of the brain separately. To accomplish this, 
we split all scans into two halves at the sagittal midline 
creating half-brain input. We then concatenated the 
extracted features from each side into a full-brain lesion 
feature vector which was used by a multitask classifier 
to predict lesion presence (Task 1) and, if positive, the 
side of the brain affected (Task 2). The logic of our MTL 
architecture is depicted in figure 1A.

In the first stage of training, to help prevent confounders, 
our model takes half brain inputs and is solely trained 
to classify if a lesion is present or absent. Each layer of 
the CNN performs two-dimensional convolution, batch 
normalisation and average pooling on each slice. At the 
end of the seventh layer, we average each feature map 
across all 11 slices. The architecture of the 7-layer CNN 
model is illustrated in figure 1B.

In the second stage, we add a classifier with two headers, 
each comprising of one fully connected layer and one 
output layer for the corresponding task. The complete 
architecture of our method is shown in figure 1C. In partic-
ular, we first trained the half-brain model on its own and 
then fine-tuned the whole architecture. The hyperparame-
ters employed are listed in the online supplemental table 1.

In the first stage of training, we focus on learning 
features of acute lesions independently from each side 
of the brain. By separating the learning of features from 
each side of the brain, we ensured that the model could 
develop distinct representations of lesions that may mani-
fest differently depending on their location. By isolating 
the feature extraction process for each hemisphere, we 
minimise potential interference from the other side of 
the brain. Once the model demonstrates proficiency in 
this task, we combine the features from both sides into 
a unified lesion feature vector that represents the entire 
brain. This approach allows the model to effectively 
encapsulate global brain information while maintaining 
sensitivity to localised patterns.

Furthermore, by processing each slice individually 
during the first stage, we enhance the model’s sensitivity 
to subtle variations that may appear in different slices. 
By using two-dimensional convolutions, we efficiently 
capture localised features without the computational 
complexity of three-dimensional convolutions. This not 
only simplifies the architecture but also improves compu-
tational efficiency, allowing for a more efficient integra-
tion of information across slices.

Comparison with existing methods
Although we did not find any publicly available open-
source methods specifically tailored for stroke lesion 
detection from brain CT scans, we benchmarked our 
approach against several architectures commonly used in 
computer vision: Vision Transformer (VIT), Swin Trans-
former, ResNet-18 and ResNet-50.

For the VIT, we used six transformer blocks, each with 
16 heads in the multihead attention layers and a patch 
size of 25. For the Swin Transformer, we employed four 
transformer blocks with 3, 6, 12 and 24 attention heads, 
respectively, a window size of 7 and a patch size of 4.

Agreement between DL classification and expert readings
The accuracy and reliability of CT scan labelling can be 
influenced by the quality of the data and the experience 
of the clinicians. A previous reliability study16 compared 
the assessments of seven of our expert contributors for 
CT and concurrent CT angiography (CTA) scans from 
15 patients. The study showed substantial agreement 
between these experts as measured by Krippendorff’s 
alpha (K-alpha) coefficient with bootstrapping.

To assess the agreement between our DL algorithm and 
the expert readings, we used 14 of the same 15 patient 
scans. One scan was excluded due to comprising two 
image sets, one through the skull base and one through 
the skull vault. To ensure fairness, we withheld the CT 
scans of these 14 patients from the training and validation 
data sets used to develop our DL method.

Model interpretability and explanation
To gain insights into the factors driving the predictions of 
our DL model, we employed counterfactuals, a method 
for generating explanations for model outputs. Counter-
factual explanations identify how an input image should 
be modified to produce a different prediction enabling 
us to identify the most important features in the image 
for the classification outcome.17 To accomplish this, we 
employed the method described by Cohen et al18 later 
referred to as ‘gifsplanation’.

In particular, we considered an image with an ischaemic 
lesion and reduced the probability of a lesion to less than 
0.01. By considering the difference between the original 
image and the counterfactual image, we obtained an attri-
bution map of the most salient regions. Intuitively, the 
voxels that are more affected by the class change are the 
ones encoding more class-specific information and there-
fore relevant for lesion detection. Examples are shown in 
figure 2.

RESULTS
Data
Out of the 3035 patients enrolled in the IST-3 study, the 
majority (95%) underwent CT scans while the remaining 
had MRI scans. Some CT data was corrupted due to 
long-term storage in the DICOM format. Consequently, 
only scans from 2578 patients (85%) were successfully 
retrieved from our DICOM server. These patients had a 
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total of 10 659 CT image sets. Among these sets, there was 
significant variability, including non-axial orientations 
(18%), localisers (5%), bone reformats (6%), separated 
skull base/vault (12%) and scans with poor patient posi-
tioning leading to registration failure (4%). After these 
processing steps, a total of 5772 image sets from 2347 
patients (1243 women and 1104 men) were selected. 
The median age of the patients was 82 years (IQR 74–86 

years). After excluding the 14 patients reserved for 
assessing algorithm-expert agreement, 5730 unique scans 
from 2333 patients were used in subsequent analyses.

The data set was split into three sets: 4031 scans from 
1633 patients for training, 844 scans from 350 patients for 
validation and 855 scans from 350 patients for testing. Of 
the 5772 total CT scans, approximately 54% (3102 scans) 
were positive for an ischaemic lesion according to experts. 

Figure 1  Multitask deep learning method logic (A), half brain CNN model architecture (lesion outcomes are left, right, both, 
none) (B) and multitask learning (MTL) architecture (C). FC indicates fully connected layers. CNN, convolutional neural network.
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Of the positive scans, 54% (1667 scans) showed lesions 
on the left side of the brain, 45% (1386 scans) showed 
lesions on the right side and the remaining (49 scans) 
showed lesions on both sides of the brain. However, the 
distribution of lesion locations was uneven as shown in 
figure 3A. In addition, 5274 scans were labelled with back-
ground or chronic brain conditions with the distribution 
of these conditions shown in figure 3B.

Model selection
On the validation data set, we investigated the optimal 
number of convolutional layers to employ in our model. 
Online supplemental figure 2, in the supplementary mate-
rial, displays the accuracy obtained with an increasing 
number of layers. We can observe an initial performance 
improvement followed by a plateau after six layers. There-
fore, we determined that utilising seven convolutional 

layers provides a favourable trade-off between perfor-
mance and computational resources.

Overall accuracy, precision, specificity of the DL model
The overall accuracy, precision and specificity of the 
DL model were evaluated using 855 test scans including 
416 baseline scans and 439 follow-up scans. The model 
achieved an accuracy of 72% for classifying a given full 
brain CT scan into one of four classes: Left-side brain 
lesion, right-side brain lesion, bilateral lesions or no lesion. 
The VIT achieved a test accuracy of 58% while the Swin 
Transformer reached 60%. In comparison, ResNet-18 
achieved 64% accuracy and ResNet-50 performed slightly 
better with 66%.

These results indicate that transformer-based architec-
tures such as VIT and Swin Transformer, achieved lower 
accuracy in this task which aligns with previous findings 

Figure 2  Image with a clear lesion in the right MCA region (A) and corresponding saliency maps highlighting the lesion in 
red (B). In (C), the lesion in the left MCA region is less clear and therefore the model is less certain about the lesion location as 
shown by the corresponding saliency maps in (D). For the saliency maps, the voxels in the 99 percentile are displayed.
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that vision transformers often require large training data 
sets to effectively learn visual representations19 and are 
frequently outperformed by CNNs in medical imaging 
tasks.20 Additionally, the convolutional architectures 
(ResNet-18 and ResNet-50) tested still performed signifi-
cantly worse than our custom architecture which achieved 
an accuracy of 72%.

We did not do any formal comparison with other, for 
example, commercially available AI diagnostic tools in 
stroke as part of this analysis but the Brainomix AI stroke 
diagnosis tool has been previously evaluated on a large 
stroke CT data set which included some cases from IST-3. 
The performance which was no better than the results 
described here is published in Mair et al.21

The accuracy (76%) on follow-up scans was consider-
ably higher than the accuracy on baseline scans (67%). 

For Task 1 (classifying an image as positive or negative 
for an ischaemic lesion), the model achieved an accuracy 
of 75%. For Task 2 (classifying the side of the ischaemic 
lesion for scans classified as positive in Task 1), the model 
achieved an accuracy of 91%.

On the entire test set, the model demonstrated higher 
specificity (80%) than sensitivity (70%). The sensitivity 
on follow-up scans was 78% while that on baseline scans 
was 56%. The specificity of follow-up scans was 83% 
compared with 79% on baseline scans.

Accuracy by lesion location
Accuracy within brain regions was evaluated on 409 scans 
(out of the 416 positive ones) from the test data set which 
included both lesion side and location labels. Of the 409 
images, 148 were baseline and 261 were follow-up scans. 

Figure 3  Lesion location (a) (MCA, ACA, PCA=middle, anterior and posterior cerebral arteries, respectively) and chronic 
condition, (b) distribution on the processed IST-3 data set subdivided for scans that were positive/negative for the presence of 
an ischaemic lesion.
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Our algorithm demonstrated high accuracy for ischaemic 
lesions in the ACA region (21/28, 75%), followed by the 
MCA region (248/363, 68%) and PCA region (18/34, 
53%). However, it had lower accuracy for brain stem (1/5, 
20%), lacunar (3/9, 33%) and cerebellar (5/15, 33%) 
lesions (see online supplemental table 2a). It should be 
noted that these types of lesions were extremely rare in 
the data set which hindered the generalisation capabili-
ties of our model.

Some patients have multiple lesions affecting different 
regions. The accuracy of our model increased with an 
increasing number of ischaemic lesions, as shown in the 
online supplemental table 2b. On average, scans with only 
one lesion had a classification accuracy of 62%, scans with 
two lesions had an accuracy of 87% and scans with more 
than two lesions had 100% accuracy.

Different infarct sizes and background conditions
The accuracy of our algorithm varies across different 
ischaemic lesion sizes. The scans with the largest lesion 
sizes (3 and 4) and those with no lesion showed the highest 
accuracy (80%). The scans with lesion sizes 1 and 2 (small 
and very small) are more difficult to classify resulting in an 
accuracy of only 49%. We observed a higher accuracy in 
classifying ischaemic lesions in follow-up scans compared 
with baseline scans across scans with different lesion sizes 
(see online supplemental table 2c).

In addition, we found that 779 out of 855 test scans had 
background brain conditions. Among these scans, non-
stroke lesions and old stroke lesions had the worst error 
rates, at 32% and 31%, respectively, followed by atrophy 
(28%) and leukoaraiosis (26%) (online supplemental 
table 2d).

Reliability compared with human experts
To evaluate the agreement between our model and expert 
readings, we compared the classifications of our algo-
rithm with those of seven human experts on the same 14 
scans. We calculated the k-alpha value of our algorithm’s 
classification compared with each expert’s reading and 
found an average value of 0.41 which is lower than the 
general k-alpha among the experts (0.72) (see online 
supplemental table 3a). However, as depicted in online 
supplemental table 3b, there were instances involving two 
scans (patients 7 and 12) where the consensus among 
experts diverged from the label present in our data set; 
this label is regarded as the ground truth by our algorithm 
and was consequently matched by its predictions. More-
over, the expert agreement data we used was based on 
an assessment of both CT and corresponding CTA data 
for each patient whereas our DL method only used the 
CT images. Indeed, using data from another study,2 we 
also computed the K-alpha value from eight experts each 
rating the same CT scans (without having access to CTA 
images) . The K-alpha value for expert agreement in this 
analysis was lower than the level of agreement obtained 
when both CT and CTA data were available: 0.51, with a 
95% CI of (0.46, 0.57).

Saliency maps evaluation
Sample saliency maps are shown in figure 2 for scans with 
lesions in the MCA region of the brain. For scans with 
a lesion that is easily distinguishable, the saliency maps 
usually highlight the relevant brain areas (figure 2A,B). 
In cases where the lesions are less clear, the areas high-
lighted by the saliency maps are more scattered, a sign 
the model is less certain about the lesion location while 
nevertheless usually still highlighting the correct region 
(figure  2C,D). A quantitative evaluation of the saliency 
maps is presented in the online supplemental material.

DISCUSSION
In this study, we developed a multitask DL algorithm 
capable of detecting ischaemic lesions of any type and in 
any brain location using 5772 CT brain scans collected 
from patients who had stroke and labelled but not anno-
tated for lesion location/extent. Our best-performing 
method achieved an accuracy of 72% in correctly 
detecting ischaemic lesions and performed better on 
follow-up scans compared with baseline scans which is 
consistent with human performance.

We also investigated the impact of lesion location, 
lesion type, lesion size and background brain changes on 
the performance of our DL system. However, training a 
DL model requires a large number of examples.22 23 In 
our study, the distribution and type of ischaemic lesions 
commonly encountered were highly skewed with most 
cases showing lesions caused by large-medium vessel 
occlusion affecting the MCA territory of the brain. As a 
result, our algorithm was less successful in detecting less 
frequently occurring lesions such as brain stem lesions, 
lacunar lesions and cerebellar lesions which had fewer 
example cases. Furthermore, some ischaemic lesions are 
much smaller than others affecting the performance of 
our model.

We also analysed four types of background brain 
changes and found that our DL system had the highest 
classification error for scans with old stroke lesions 
and scans with other lesion types not related to stroke. 
However, a balanced data set where each feature is 
represented equally would be required to determine the 
importance of DL system confounding by specific acute 
lesions or background brain changes. Further studies in 
the future are needed to address this issue.

The average agreement between our algorithm and 
seven experts was relatively low compared with the agree-
ment among the seven experts. There are likely multiple 
reasons for this. First, ground truth is not always obtain-
able in medical imaging and our analysis was based on 
a clinical gold standard reference that was qualitatively 
assessed by a single expert which is known to be imperfect 
and influenced heavily by clinician experience. In other 
words, our DL system learnt from the best available data 
but the data were imperfect. Second, the expert agree-
ment data we used included both CT and corresponding 
CTA data for each patient while our DL method only used 
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the CT images. The addition of CTA makes it more likely 
for our experts to reach the correct answer (and thus 
agree) for each scan. In fact, using data from a separate 
analysis, we observed lower agreement among experts 
when only CT images were provided which was more 
similar to our expert-DL agreement.

Early detection of ischaemic stroke is important for 
improving patient outcomes due to the time-sensitive 
nature of available treatments. Accurate early detection 
influences several aspects of acute stroke management 
such as appropriate patient prioritisation in emergency 
settings, selection for treatment with thrombolysis and/
or thrombectomy and the early initiation of secondary 
prevention measures which can reduce the risk of recur-
rent strokes.

However, despite its importance, early detection of 
ischaemic stroke presents several challenges such as the 
subtle presentation of early-stage lesions and the pres-
ence of stroke mimics and chameleons as demonstrated 
in a previous analysis of a commercially available tool 
which revealed many shortcomings.21

The superior performance of our model on follow-up 
scans compared with baseline scans aligns with human 
diagnostic behaviour. Moreover, follow-up predictions 
still provide significant value in stroke management 
and patient care. They enable clinicians to evaluate the 
effectiveness of initial treatments and thereby better 
predict outcomes or plan additional interventions such 
as hemicraniectomy.

Since some stroke-related complications may not mani-
fest during the acute phase, follow-up predictions can 
aid in detecting delayed issues such as cerebral swelling, 
haemorrhagic transformation or other secondary events. 
Additionally, tracking lesion progression offers valuable 
insights for shaping rehabilitation strategies allowing for 
personalised therapies based on the patient’s evolving 
condition and recovery potential.

Interpretability of DL models, particularly in the 
context of medical imaging, is a challenging topic due to 
the so-called ‘black box’ nature of these models. However, 
understanding how these models arrive at their decisions 
is critical for ensuring their reliability and detecting any 
potential biases.24 To address this issue, we employed 
counterfactual explanations and generated saliency maps 
that highlight the most relevant parts of the images for 
our model’s output. Our saliency maps showed that our 
DL algorithm was able to detect obvious ischaemic lesions 
with high accuracy while also indicating that the model 
was less certain about the location of more subtle lesions 
and may highlight regions outside the true lesion. This 
behaviour is consistent with that of humans.

Other authors employed a two-stage network to combine 
local and global information for ischaemic stroke lesion 
detection25 obtaining 87% accuracy. However, in addi-
tion to CT scans they also employed Diffusion-weighted 
imaging (DWI) MR images (which are highly sensitive for 
early ischaemia and not routinely used in most centres) 
and their data set is composed of only 277 patients. 

Mirajkar et al26 also used a combination of CT and DWI 
images for the segmentation of stroke lesions. However, 
our study focuses solely on CT scans and involves a larger-
scale investigation to establish a benchmark for this 
imaging modality. By doing so, we have tried to demon-
strate that it is possible to develop future stroke detection 
algorithms based on routinely acquired (as opposed to 
optimised for research) CT imaging alone since this is the 
most widely used imaging modality for acute stroke.

A limitation of our study is that culprit ischaemic lesions 
may not be visible on CT scans, especially at baseline. This 
could lead to incorrect labelling of scans. Using healthy 
controls would have been an option but it is not ethical 
to scan truly normal individuals with CT due to the asso-
ciated radiation. While other individuals with ‘normal’ 
CTs acquired for other reasons may include confounding 
features. The second limitation is that subgroup analyses 
exploring the impact of lesion location, lesion number 
and other chronic features suffer from small numbers of 
cases in many of the categories.

CONCLUSION
Our DL algorithm achieved an accuracy of 72% in 
detecting the presence of ischaemic lesions and iden-
tifying the side of the brain affected by the CT brain 
scans of patients with stroke symptoms. Our algorithm 
performed best when lesions were more visible. We 
found that different lesion types, sizes and chronic brain 
conditions affected the performance of our system. Our 
results demonstrate the potential of DL algorithms for 
detecting ischaemic lesions on CT using a large number 
of routinely collected scans without lesion annotation. 
This approach has the potential to develop DL systems 
from vast numbers of scans, not just those collected for 
research (as is currently the norm). Such algorithms 
would much better represent real-life patients with all 
their natural heterogeneity and ultimately, provide more 
accurate image interpretation for all patients with acute 
ischaemic stroke.
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