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ABSTRACT
Background Recently, computational fluid dynamics (CFD) 
has been used to simulate blood flow of symptomatic 
intracranial atherosclerotic stenosis (sICAS) and investigate 
the clinical implications of its haemodynamic features, 
which were systematically reviewed in this study.
Methods Following the Preferred Reporting Items for 
Systematic Reviews and Meta- Analyses and Meta- analysis 
of Observational Studies in Epidemiology statements, we 
searched PubMed and Embase up to March 2024 and 
screened for articles reporting clinical implications of 
haemodynamic parameters in sICAS derived from CFD 
models.
Results 19 articles met the inclusion criteria, all studies 
recruiting patients from China. Most studies used CT 
angiography (CTA) as the source image for vessel segmentation, 
and generic boundary conditions, rigid vessel wall and 
Newtonian fluid assumptions for CFD modelling, in patients with 
50%-99% sICAS. Pressure and wall shear stress (WSS) were 
quantified in almost all studies, and the translesional changes in 
pressure and WSS were usually quantified with a poststenotic to 
prestenotic pressure ratio (PR) and stenotic- throat to prestenotic 
WSS ratio (WSSR). Lower PR was associated with more severe 
stenosis, better leptomeningeal collaterals, prolonged perfusion 
time and internal borderzone infarcts. Higher WSSR and other 
WSS measures were associated with positive vessel wall 
remodelling, regression of luminal stenosis and artery- to- artery 
embolism. Lower PR and higher WSSR were both associated 
with the presence and severity of cerebral small vessel disease. 
Moreover, translesional PR and WSSR were promising predictors 
for stroke recurrence in medically treated patients with sICAS 
and outcomes after acute reperfusion therapy, which also 
provided indicators to assess the effects of stenting treatment on 
focal haemodynamics.
Conclusions CFD is a promising tool in investigating the 
pathophysiology of ICAS and in risk stratification of patients 
with sICAS. Future studies are warranted for standardisation of 
the modelling methods and validation of the simulation results 
in sICAS, for its wider applications in clinical research and 
practice.

INTRODUCTION
Intracranial atherosclerotic stenosis (ICAS) 
is a common cause of ischaemic stroke and 

transient ischaemic attack (TIA), which 
accounts for 30%–50% of all ischaemic 
strokes in Asians and 8%–10% in Cauca-
sians.1 2 Despite optimal medical treatment, 
patients with stroke or TIA due to ICAS, that 
is, symptomatic ICAS (sICAS), have a consid-
erable risk of recurrent stroke.3 4 ICAS can be 
diagnosed with a variety of modalities, such as 
transcranial Doppler (TCD), MR angiography 
(MRA), CT angiography (CTA) and digital 
subtraction angiography (DSA).5 While 
these imaging techniques are useful tools in 
identifying vessel lumen changes secondary 
to atherosclerosis, another emerging tool, 
computational fluid dynamics (CFD), could 
furnish other valuable characteristics in ICAS.

CFD, modelling flow pattern by solving 
equations of fluid dynamics, has been a 
useful tool for researching haemodynamics in 

WHAT IS ALREADY KNOWN ON THIS TOPIC

 ⇒ CFD is an emerging tool to investigate haemody-
namic patterns of sICAS and its clinical implications. 
However, the CFD modelling methodology, haemo-
dynamic parameters and clinical implications inves-
tigated varied among previous studies.

WHAT THIS STUDY ADDS

 ⇒ In a systematic review, we summarized the CFD 
modelling methodology, haemodynamic parameters 
of interest and their associations with other imaging 
markers and clinical indicators, in existing studies 
using the CFD technique to investigate haemody-
namics of sICAS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This review article provides a summary of the clin-
ical implications of haemodynamics in sICAS based 
on the CFD technique. It advocates standardisation 
and validation of the modelling methodology and 
findings, for future research advance in this area.
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cardiovascular and cerebrovascular diseases, for example, 
wall shear stress (WSS), velocity and pressure.6 Recent 
studies indicated that CFD is also promising in studying 
haemodynamics and relevant clinical implications in 
sICAS.7 Yet, the CFD modelling results rely very much 
on the assumptions on blood, vessel wall and boundary 
conditions, which have varied among previous studies in 
sICAS. The haemodynamic parameters and the clinical 
implications also differed among previous studies. These 
may have hindered generalisability of the findings and 
further progress in this area. We therefore performed 
this systematic review, summarising the modelling meth-
odology, haemodynamic parameters of interest and the 
associations with other imaging and clinical indicators, in 
existing studies using the CFD method to analyse haemo-
dynamics of sICAS. We also intended to discuss limitations 
of existing studies and propose some future research 
directions, in the hope of advocating more investigations 
and advances in this area.

METHODS
We conducted this study following Preferred Reporting 
Items for Systematic Reviews and Meta- Analyses and 
Meta- analysis of Observational Studies in Epidemiology 
statements.8 9 We searched PubMed and Embase database 
with English full- text articles between January 2000 and 
March 2024. Key searching terms included ‘intracranial 
arter*’, ‘cerebral arter*’, ‘steno*’, ‘occlus*’ and ‘ather-
osclero*’, in combination with ‘haemodynamic*’ and 
‘computational fluid dynamic*’ (online supplemental 
tables S1,S2). Reference lists were also manually searched 
for eligible studies.

Study inclusion criteria were (1) cross- sectional or longi-
tudinal study recruiting patients with sICAS, (2) using 
CFD models to study focal (adjacent to ICAS lesion) or 
global cerebral haemodynamics and (3) reporting clin-
ical implications of the haemodynamic metrics from CFD 
models, for example, associations of the haemodynamic 
metrics with other imaging markers or clinical features/
outcomes. Animal/experimental studies, pure technical 
papers with no imaging or clinical association investiga-
tions, studies simply verifying the CFD- based haemody-
namic parameters with invasively measured counterparts, 
case reports/series or studies with sample size <10 cases, 
and review, letter and comment articles were excluded. 
Studies involving both patients with sICAS and patients 
with extracranial atherosclerotic stenosis, without sepa-
rate data on those with sICAS, were also excluded.

Study characteristics, haemodynamic parameters and 
the main findings on clinical implications were extracted. 
The risk of bias was assessed. More details over the 
methods are described in online supplemental methods.

RESULTS
Among the 5226 articles identified through literature 
search, 40 remained after screening the title and abstract, 
of which 19 studies met the inclusion criteria (figure 1).

Study and patient characteristics
Study characteristics were summarised in table 1, and 
detailed CFD model setup and clinical implications 
of each study were described in online supplemental 
table S3). Of the 19 studies included, 5 were published 
between 2014 and 2019 and 14 published after 2020. All 

Figure 1 Flow chart for study screening. CFD, computational fluid dynamics; ICAS, intracranial atherosclerotic stenosis; 
sICAS, symptomatic intracranial atherosclerotic stenosis.
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studies were conducted in China. Regarding the sICAS 
lesion, 13 and 4 studies, respectively, recruited patients 
with 50%–99% and 70%–99% stenosis. Additionally, two 
studies focused on 30%–99% and 50%–70% stenosis, 

respectively. Nine and one studies limited sICAS in the 
anterior circulation or posterior circulation, respectively, 
and nine studies involved both circulations. The sample 
size was >100 in 5 studies. Most of the included studies 

Table 1 Study characteristics of the 19 primary studies included in this systematic review

Study Country
Patient inclusion 
criteria

Anterior/
posterior circulation

Number of 
cases

Source images and CFD 
model setup

Haemodynamic parameters in 
CFD model

Correlations with anatomical characteristics of the sICAS lesions in cross- sectional and longitudinal studies

  Nam et al15 China 50%–99% sICAS Anterior circulation 56 CTA- based generic steady 
model

PR, SSR ratio, velocity ratio

  Liu et al11 China 70%–99% sICAS Anterior and posterior 
circulations

11 CTA- based patient- specific 
transient model

PR

  Zhang et al16 China 50%–99% sICAS Anterior circulation 40 TOF- MRA- based generic 
transient model

PR, WSSR

  Lan et al13 China 50%–99% sICAS Anterior and posterior 
circulations

39 CTA- based generic steady 
model

rWSS measures

Correlations with collateral and perfusion status in cross- sectional studies

  Leng et al17 China 50%–99% sICAS Anterior circulation 85 CTA- based generic steady 
model

Pressure gradient

  Lan et al18 China 50%–99% sICAS Anterior circulation 83 CTA- based generic steady 
model

PR

  Wang et al19 China 30%–99% sICAS Anterior and posterior 
circulations

18 Biplane DSA- based patient- 
specific steady model

PR

  Raynald et 
al12

China 50%–70% sICAS Anterior and posterior 
circulations

20 CTA- based patient- specific 
transient model

Pressure, velocity

  Yin et al
10

China 50%–99% sICAS Anterior and posterior 
circulations

10 CTA- based generic transient 
model

PR

Correlations with stroke mechanisms in cross- sectional studies

  Feng et al21 China 50%–99% sICAS Anterior circulation 99 CTA- based generic steady 
model

PR, WSSR

  Li et al22 China 50%–99% sICAS Anterior circulation 84 CTA- based generic steady 
model

PR

Correlations with cerebral small vessel disease in cross- sectional study

  Zheng et al24 China 50%–99% sICAS Anterior circulation 112 CTA- based generic steady 
model

PR, WSSR

Correlations with the risk of stroke recurrence in medically treated patients with sICAS

  Leng et al14 China 70%–99% sICAS Anterior and posterior 
circulations

32 CTA- based generic steady 
model

PR, SSR ratio, velocity ratio

  Leng et al7 China 50%–99% sICAS Anterior and posterior 
circulations

245 CTA- based generic steady 
model

PR, WSSR

  Tian et al25 China 50%–99% sICAS Anterior and posterior 
circulations

245 CTA- based generic steady 
model

PR, WSSR

  Feng et al26 China 50%–99% sICAS Anterior and posterior 
circulations

157 CTA- based generic steady 
model

PR

Correlations with functional outcome in patients with sICAS receiving acute reperfusion therapy

  Wu et al27 China Patients receiving 
intravenous 
thrombolysis or 
acute endovascular 
treatment with 
50%–99% sICAS

Anterior circulation 120 TOF- MRA- based patient- 
specific steady model

PR, WSSR

Changes of the haemodynamic parameters in sICAS with stenting treatment

  Zhang et al28 China 70%–99% sICAS Anterior circulation 51 3DRA- based generic transient 
model

Pressure, velocity, vorticity, 
WSS

  Zhou et al29 China 70%–99% sICAS Posterior circulation 62 3DRA- based generic transient 
model

Pressure, velocity, vorticity, 
WSS

CFD, computational fluid dynamics; CTA, CT angiography; 3DRA, three- dimensional rotational angiography; DSA, digital subtraction angiography; PR, pressure 
ratio; rWSS, relative wall shear stress; sICAS, symptomatic intracranial atherosclerotic stenosis; SSR, shear strain rate; TOF- MRA, time- of- flight MR angiography; 
WSSR, wall shear stress ratio.
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were observational and retrospective, and 11 of them had 
a low risk of bias (online supplemental table S4).

CFD modelling methods
CFD modelling for ICAS mostly involves the following 
steps: (1) reconstruction of the arteries of interest from 
source images of neurovascular exams; (2) generation 
of a mesh in the vessel lumen, wall and inlet/outlet; (3) 
setup of boundary conditions on inlet/outlet and blood 
properties; (4) simulation of blood flow by solving fluid 
dynamics equations and (5) postprocessing of haemo-
dynamic parameters (online supplemental figure S1). 
The software used for CFD modelling in the 19 primary 
studies was listed in online supplemental table S5).

Most studies used CTA as the source images for vessel 
segmentation, others used time- of- flight MRA, three- 
dimensional rotational angiography and biplane DSA. In 
the CFD model setup, most studies used generic boundary 
conditions, rigid with no- slip vessel wall and Newtonian 
blood assumptions. Five studies used patient- specific inlet 
or outlet boundary conditions. Among them, two studies 
used lumped parameter models to simulate microcircu-
lation resistance on the outlet, and Liu et al also consid-
ered vascular compliance.10 11 Raynald et al developed 
an innovative computational approach, incorporating 
patient- specific measurements of pressure- wire and CFD 
simulation, to evaluate microcirculation resistance and 
blood flow, which was strongly correlated with TCD- based 
volumetric flow measurements.12 Six studies simulated 
transient- state blood flow, while other studies conducted 
steady- state simulations.

Haemodynamic metrics of interest
Regarding the haemodynamic features, most studies 
quantified pressure and WSS across the sICAS lesion, and 
other studies also assessed shear strain rate (SSR), velocity 
and vorticity.

15 studies used various terms to reflect the pressure 
change across a sICAS lesion, including pressure ratio 
(PR) and absolute pressure gradient. PR was calculated as 
poststenotic pressure distal to the lesion divided by prest-
enotic pressure in the proximally normal artery segment. 
The pressure gradient was calculated as the absolute 
value of prestenotic pressure minus poststenotic pressure.

Seven studies assessed WSS, such as WSS ratio (WSSR) 
or relative WSS (rWSS). Most studies used WSSR, calcu-
lated as WSS at the stenotic- throat divided by prestenotic 
WSS, to reflect WSS change across a sICAS lesion. Some 
other studies measured rWSS at one location on the vessel 
wall across a sICAS lesion,13 calculated as the ratio of the 
absolute WSS value at one location and the mean WSS 
value across the circumference in the proximally normal 
artery segment. The principles of calculating WSSR and 
rWSS were similar, both to offset the effects of individual 
arterial geometry on focal WSS in comparing the WSS 
values among individuals.

Other studies also evaluated SSR, velocity, vorticity 
and their related parameters. Leng et al and Nam et al 

calculated the ratio of SSR at the stenotic- throat and at 
the prestenotic arterial segment, and similarly the velocity 
ratio, to reflect the velocity changes across the sICAS 
lesion.14 15

Correlations of the haemodynamic metrics with anatomical 
characteristics of the sICAS lesions in cross-sectional and 
longitudinal studies
In cross- sectional studies, Nam et al observed in- average 
lower PR, higher SSR ratio and higher velocity ratio in 
severe (70%–99%) sICAS lesions than moderate (50%–
69%) stenosis (all p<0.001).15 However, PR might not 
be linearly proportional to the stenosis rate in sICAS, 
according to Liu et al.11 In addition, Zhang et al found 
higher WSSR (medians 9.98 vs 5.99, p=0.004) and WSS 
(means 53.99 Pa vs 39.98 Pa, p=0.023) at the narrowest 
location in patients with symptomatic middle cerebral 
artery (MCA) stenosis with positive remodelling than 
those with negative remodelling in high- resolution 
MRI (HRMRI), while the remodelling index (Pearson’s 
r=0.376, p=0.026) and plaque area (Pearson’s r=0.407, 
p=0.015) were positively correlated with WSSR.16 In a 
longitudinal study, Lan et al associated a higher maximum 
WSS (adjusted OR (aOR), 1.20; 95 % CI, 1.03 to 1.39; 
p=0.019) and larger mean rWSS of the high- WSS region 
(aOR, 1.53; 95% CI, 1.07 to 2.19; p=0.021) with regres-
sion of luminal stenosis in sICAS in CTA over 1 year, in 
medically treated patients; such associations were similar 
when analysing the proximal and distal segments of the 
lesion separately.13 It was speculated that positive remod-
elling may play a role underlying such associations, 
which, however, could not be verified in this study using 
CTA only to assess features of the sICAS lesions. These 
findings indicated complicated relationships between the 
haemodynamic and anatomical features of sICAS lesions 
that warrant further investigations.

Correlations with collateral and perfusion status in cross-
sectional studies
In cross- sectional studies, CFD models were used to inves-
tigate haemodynamic metrics affecting leptomeningeal 
collateral (LMC) and perfusion status in patients with 
sICAS. Leng et al found the correlation of a larger pressure 
gradient with better LMCs in patients with sICAS (aOR 
for 10 mm Hg increment in absolute pressure gradient, 
1.70; 95% CI, 1.06 to 2.74; p=0.029), which indicated a 
significant translesional pressure drop served as a driving 
force for recruiting LMCs.17 In addition, Lan et al inves-
tigated the interrelationships among antegrade residual 
flow through symptomatic MCA stenosis (as reflected by 
translesional PR in CFD models), LMC flow assessed in 
CTA that could retrogradely perfuse distal brain territo-
ries and the overall cerebral perfusion measured in CT 
perfusion (CTP).18 The study showed lower PR (means 
0.79 vs 0.90, p=0.015) and better LMC status (56.7% vs 
34.5% with good LMCs, p=0.079) among patients with 
severe stenosis (70%–99%) than those with moderate 
stenosis (50%–69%). Moreover, the study also indicated 
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that cerebral perfusion in the supplying territory of a 
stenotic MCA may depend more on LMC flow (Pearson’s 
r=0.038, p=0.051) among patients with severe stenosis but 
more on antegrade residual flow (Pearson’s r=−0.605, 
p<0.001) among those with moderate stenosis. In another 
study, Wang et al found a negative correlation between 
PR and Tmax (Spearman’s r=−0.73, p<0.01), the dura-
tion to the maximum of residue function in perfusion- 
weighted MRI, which means a larger translesional pres-
sure gradient associating with prolonged perfusion 
time.19 Yin et al found a significantly lower PR in patients 
with sICAS with apparent hypoperfusion than those 
with normal perfusion defined in 4D CTA (means 0.38 
vs 0.76, p<0.01), although the sample size was small for 
the analysis (n=10).10 In addition, Raynald et al observed 
a good agreement on the blood flow rate derived from 
CFD modelling and TCD measurements (mean differ-
ence: −0.78 mL/s, p for Bland- Altman test=0.027), while 
the mean velocities showed less agreement between CFD 
simulation and TCD measurements (mean difference: 
−0.05 cm/s, p for Bland- Altman test=0.399), which indi-
cated greatly varied flow resistance among individuals.12

Overall, these studies have revealed the role of transle-
sional pressure gradient across sICAS lesions in affecting 
the distal collateral and perfusion status, while various 
factors could affect these relationships. Of note, none 
of these studies reported data separately in patients with 
posterior- circulation sICAS, for whom standard perfusion 
parameters have not been established and more investi-
gations are needed.

Correlations with stroke mechanisms in cross-sectional 
studies
ICAS can cause an ischaemic stroke or TIA via different 
mechanisms with different infarct topography, for 
example, hypoperfusion (usually with borderzone 
infarcts), artery- to- artery embolism (usually with multiple 
cortical or territorial infarcts) and parent artery athero-
sclerosis occluding penetrating artery (usually with single 
subcortical small infarct). The stroke mechanisms have 
been associated with different risks of stroke relapse in 
medically treated patients with sICAS.20 The associations 
between haemodynamic features of sICAS in CFD models 
and stroke mechanisms have been investigated in studies 
by Feng et al21 and Li et al.22 First, Feng et al found high 
WSSR as an independent predictor of artery- to- artery 
embolism as a stroke mechanism (aOR, 3.90; 95% CI, 
1.22 to 12.47; p=0.022), in patients with sICAS in the 
anterior circulation.21 More interestingly, such associa-
tion was more prominent in those with a low PR (large 
translesional pressure gradient). In addition, Li et al 
compared haemodynamic features of sICAS lesions and 
other imaging characteristics between patients with sICAS 
with internal and cortical borderzone infarcts, in whom 
hypoperfusion has usually been considered as the stroke 
mechanism.22 They found low PR (PR≤median) inde-
pendently associated with internal borderzone infarcts 
(aOR: 4.22, p=0.026) and higher incidence of coexisting 

small cortical infarcts in those with cortical borderzone 
infarcts. The findings suggested artery- to- artery embolism 
as a possible pathogenic mechanism underlying cortical 
borderzone infarcts, which was against previous specula-
tions. Overall, these studies indicated important roles of 
haemodynamics in determining the stroke mechanisms 
in sICAS, while further studies are needed to explain and 
verify the findings.

Correlations with cerebral small vessel disease in cross-
sectional study
Cerebral small vessel disease (CSVD) commonly coexists 
with ICAS, particularly in older individuals.23 In a cross- 
sectional study, Zheng et al24 associated abnormal PR 
(PR≤median) and WSSR (WSSR≥fourth quartile) with 
moderate- to- severe white matter hyperintensities (aOR: 
10.12, p=0.018), presence of cortical microinfarcts (aOR: 
5.25, p=0.003) and moderate- to- severe overall CSVD 
burden (aOR: 12.55, p=0.033) in the ipsilateral hemi-
sphere to sICAS, independent of these CSVD imaging 
markers and overall burden in the contralateral hemi-
sphere. The study indicated the role of haemodynamics 
in affecting the severity of CSVD in patients with sICAS.

Correlations with risk of recurrent stroke in medically treated 
patients with sICAS
In a pilot study, Leng et al14 associated higher SSR ratio 
(HR, 1.03; 95% CI, 1.00 to 1.05; p=0.023) and higher 
velocity ratio (HR, 1.03, 95% CI, 1.00 to 1.06; p=0.035) 
with a higher risk of recurrent ischaemic stroke in the 
same territory within 1 year, in medically treated patients 
with sICAS with 70%–99% stenosis. Additionally, a lower 
PR also tended to be correlated with the stroke risk, 
however, which did not achieve statistical importance 
(HR, 0.98; 95% CI, 0.97 to 1.00; p=0.074). This study 
demonstrated that stenosis rate may not be the sole or 
primary indicator for assessing the risk of recurrent 
stroke in patients with sICAS. In the subsequent Stroke 
Risk and Haemodynamics in Intracranial Atherosclerotic 
Disease (SOpHIA) study of 245 patients with sICAS with 
50%–99% stenosis, low PR (PR≤median, adjusted HR 
(aHR), 3.16; 95% CI, 1.15 to 8.72; p=0.026) and high 
WSSR (WSSR≥4th quartile, aHR, 3.05; 95% CI, 1.25 to 
7.41; p=0.014) were independently correlated with a 
higher risk of stroke relapse in the same territory.7 Based 
on the SOpHIA cohort, Tian et al developed a D2H2A 
nomogram to predict recurrent ischaemic stroke in the 
same territory in patients with sICAS.25 Diabetes, dyslip-
idaemia, haemodynamic status (PR and WSSR), hyper-
tension and age ≥50 years were incorporated in the 
predictive model, which could be a useful tool to stratify 
patients with sICAS receiving medical treatment. Further, 
in a substudy of SOpHIA, Feng et al26 divided 157 patients 
with 50%–99% sICAS into normal PR (PR>median) and 
low PR (PR≤median) groups and investigated the influ-
ence of PR on the association between systolic blood pres-
sure (SBP) levels throughout follow- up (SBPFU) and the 
risk of recurrent stroke in the same territory, in medically 
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treated patients with sICAS. They found patients with 
normal PR and lower SBPFU had a significantly decreased 
risk of recurrent stroke (HR for 10 mm Hg decrement, 
0.46, 95% CI, 0.24 to 0.88; p=0.018); yet, patients with low 
PR and SBPFU≤130 mm Hg had an increased risk of recur-
rent stroke, relative to 130<SBPFU<150 mm Hg (HR, 5.08; 
95%CI, 1.05 to 24.49; p=0.043).

Correlations with functional outcome in patients with sICAS 
receiving acute reperfusion therapy
In patients with 50%–99% sICAS in MCA who mostly 
received intravenous thrombolysis and some received 
acute endovascular treatment, Wu et al associated the 
WSSR before treatment (OR:0.86, 95%CI:0.75 to 0.99, 
p=0.041) and the difference of WSSR before and after 
treatment (OR, 0.72; 95% CI, 0.52 to 1.03; p=0.043) 
with the functional outcome by modified Rankin Scale 
at 3 months.27 In contrast to prediction models solely 
incorporating clinical variables, the inclusion of haemo-
dynamic metrics may enhance the predictive capacity for 
functional outcomes in such patients (p<0.05).

Changes of the haemodynamic parameters in sICAS with 
stenting treatment
In patients with severe M1 MCA stenosis, Zhang et al 
reported that successful stenting could reduce the pres-
sure loss across the sICAS lesion compared with that 
before stenting (means 6.46 Pa vs 12.84 Pa, p<0.001), 
which could enhance antegrade blood flow.28 In patients 
with severe basilar artery stenosis, Zhou et al found 
significantly reduced WSS (means 14.84 Pa vs 139.49 
Pa, p<0.001) at the stenosis segment after stenting treat-
ment.29

DISCUSSION
In this study, we overviewed the CFD modelling method-
ology and the haemodynamic parameters of interest in 
sICAS in previous relevant studies, moreover, the clinical 
implications of the findings. Most of the studies recruited 
patients with sICAS with 50%–99% or 70%–99% stenosis 
in the anterior and posterior circulations. Regarding 
CFD methodology, many studies used CTA as the source 
image for artery reconstruction, and generic boundary 
conditions, rigid with no- slip vessel and Newtonian blood 
assumptions with steady- state simulations. Pressure and 
WSS, and their changes across the lesion, were most often 
used to assess the haemodynamic impact of sICAS lesions. 
In cross- sectional and longitudinal studies, haemody-
namic metrics from CFD models were correlated with 
the stenosis rate and plaque characteristics of sICAS, the 
collateral and perfusion status, the stroke mechanism as 
well as the presence and severity of CSVD. The haemo-
dynamic metrics obtained from CFD models were also 
promising predictors for the risk of recurrent stroke in 
medically treated patients with sICAS and outcomes after 
intravenous thrombolysis or endovascular treatment, 
which also provided indicators to assess the effects of 
stenting treatment on focal haemodynamics.

CFD is a promising technique to quantify the haemo-
dynamic impact of sICAS and to investigate the clin-
ical implications of the haemodynamic parameters. To 
conduct valid CFD modelling in sICAS, it is crucial to 
obtain accurate three- dimensional geometry of arteries 
of interest and set up proper boundary conditions and 
blood properties. However, there are limitations with the 
current CFD modelling methodology, which may have 
hindered its application in ICAS research and clinical 
practice. First, CFD modelling is time- consuming and 
complex. Second, current CFD models lack patient- 
specific data. In recent studies in patients with sICAS, the 
boundary conditions are usually set using estimates from 
previous studies or based on physiological models. Deep 
learning techniques may address these issues, which could 
decrease the expansive computational time for complex 
biomedical problems, and help to solve problems when 
boundary conditions are unknown.30 Third, the Newto-
nian assumption of blood and hence a constant viscosity 
are used in most studies for simplicity, although blood 
flow is non- Newtonian. However, CFD models simulated 
with Newtonian and non- Newtonian conditions in severe 
ICAS cases may yield significant differences of WSS esti-
mates in areas with low WSS values, according to a small- 
scale study.31 Finally, although several preliminary studies 
have validated the haemodynamic measures obtained 
from CFD modelling with other non- invasive or invasive 
measuring methods. for example, conventional CT or MR 
perfusion imaging, phase- contrast or quantitative MRI or 
pressure- wire guided measurements during angiogram 
performance,32 33 larger- scale studies are needed for 
the validation. With the many promising applications of 
the CFD approach in stroke and ICAS research, valida-
tion of the modelling methodology and findings would 
be a prerequisite for its ultimate application in clinical 
practice to guide prognostication, clinical decisions and 
treatment in patients with stroke and ICAS, as it is in the 
cardiology field.

In sICAS, the stenosis rate has been used to scale the 
lesion severity, which is insufficient for risk stratification 
of affected patients.34 Previous studies have indicated 
that the anatomical severity of sICAS does not always 
translate to a similar haemodynamic significance when 
anatomically ‘moderate’ stenosis could be haemodynam-
ically significant.35 Moreover, various factors, such as the 
haemodynamic impact, plaque morphology and stability, 
collateral and perfusion status and their intercorrelations, 
may also influence the stroke mechanisms and recurrent 
risks in patients with sICAS. Some of these could be inves-
tigated using CFD technique. For instance, in prelimi-
nary investigations, focal haemodynamics quantified in 
CFD models were associated with positive remodelling of 
intracranial plaques.16 Studies are warranted to further 
uncover the interrelationships between focal haemo-
dynamics and plaque morphology/components, which 
could enhance the understanding of the pathophysiology 
of atherosclerosis and vascular remodelling process. 
Coupling HRMRI with the CFD technique can help from 
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this perspective. On the other hand, the collateral circula-
tion plays a crucial role in maintaining cerebral perfusion 
and hence affecting subsequent stroke risk in patients 
with sICAS, but the mechanism of collateral recruiting is 
far from being elucidated.36 Using the CFD technique, a 
preliminary study has provided evidence supporting the 
translesional pressure gradient as a driving force for the 
presence of good collaterals in patients with sICAS.17 Yet, 
this was a cross- sectional study that cannot establish the 
causal relationships or reveal the dynamic evolution of 
the sICAS lesion and the collateral status, which needs to 
be followed up with serial evaluation for collateral status.

In recent years, with more effective medical treat-
ment and possibly better patient compliance, the risk of 
recurrent stroke of patients with sICAS have significantly 
declined. Yet, up to 10% of patients with sICAS could have 
a stroke recurrence after 1 year.4 7 As mentioned above, 
the haemodynamic metrics of sICAS derived from CFD 
models may be promising indicators for risk stratification 
of affected patients, supported by the SOpHIA study and 
other relevant studies. For instance, the SOpHIA study 
revealed higher stroke relapse risk in patients with sICAS 
with low PR (large translesional pressure gradient) and 
high WSSR (significantly increased WSS around lesions).7 
Hypoperfusion and artery- to- artery embolism, which 
have been associated with excessively high risk of recur-
rent stroke in a previous study,20 could be the potential 
mechanisms for stroke recurrence related with low PR 
and high WSSR.

In addition, the CFD method may also be a prom-
ising tool in investigating the target for BP control in 
secondary stroke prevention in patients with sICAS. The 
latest guidelines recommend a BP <140/90 mm Hg for 
secondary stroke prevention in sICAS.37 However, this BP 
target was determined following the treatment regimen 
in the Stenting and Aggressive Medical Management 
for Preventing Recurrent Stroke in Intracranial Stenosis 
trial,3 which was not tested against other BP targets in 
randomised controlled trials. Previous studies indicated 
that long- term, stringently controlled BP may increase 
the risk of recurrent stroke in patients with sICAS with 
hypoperfusion, when low BP levels could further aggravate 
the reduced cerebral perfusion.38 39 A CFD study echoed 
such findings that the altered relationship between SBP 
during follow- up and recurrent stroke risk in patients 
with sICAS could be attributed to the change in trans-
lesional PR.26 SBP level maintained below 130 mm Hg 
was correlated with a minimal risk of recurrent stroke in 
patients with normal PR, which, however, was associated 
with an increased risk of recurrent stroke in patients with 
low PR (hence possibly reduced perfusion). This could 
be explained by the impaired cerebral autoregulation in 
patients with sICAS, when the cerebral perfusion could 
be passively affected by systemic BP changes.40 Yet, these 
were retrospective, small- scale studies, which need further 
validation.

Moreover, CFD may also help in guiding stenting 
treatment in sICAS. Angioplasty +/- stenting is not 

recommended by the latest guidelines as a first- line treat-
ment for patients with sICAS.41 Yet, stenting may be effec-
tive in certain subgroups of patients with sICAS. First, 
the CFD technique allows blood flow simulations with 
different vascular and stent geometry, which may help 
plan stenting treatment. For example, a small- scale study 
indicated that the stent shape may affect focal WSS and 
low- density lipoprotein filtration rate in sICAS,42 which 
study, however, was not included in this review because of 
the small sample size (<10). Second, the CFD technique 
may help assess the effects of stenting on focal haemody-
namics in patients with sICAS, according to some prelim-
inary studies as mentioned above.28 29 Yet, it is largely 
unknown regarding the associations of prestenting and 
poststenting haemodynamics with imaging and clinical 
outcomes in such patients, for example, in- stent reste-
nosis and stroke recurrence, which need further investi-
gations. In addition, studies are needed to investigate the 
value of CFD- based PR in identifying ischemia- causing 
sICAS lesions, who may truly benefit from stenting treat-
ment, as what is being done for coronary artery lesions.43

This systematic review has some limitations. First, we did 
not conduct a meta- analysis of the haemodynamic param-
eters and associations of interest. This again reflects a 
major limitation of the existing CFD studies, with heterog-
enous CFD modelling methods, various haemodynamic 
metrics and research questions investigated, and usually 
small sample sizes, which has hindered comparisons or 
synthesis of findings from different studies. Second, 
multiple imaging methods can be used to assess or quantify 
haemodynamic features of sICAS, for example, vascular 
ultrasound, contrast- dependent or contrast- independent 
perfusion imaging, phase- contrast or quantitative MRI, or 
invasive measurements with pressure wire,44 which were 
not discussed or compared against the CFD approach in 
this systematic review. However, this is not within the focus 
of this systematic review. Third, all studies included in this 
review article were conducted in China. Although there 
were CFD studies on sICAS conducted in other areas of 
the world, they did not meet the sample size criterion or 
did not report the clinical relevance of the findings by 
the inclusion criteria and objectives of this study. This 
also reflects the greater interest in ICAS research in Asian 
populations, with a higher ICAS prevalence than that in 
Western populations. Yet, on the other hand, this could 
cause selection bias; hence, the study findings should be 
corroborated in different populations. Last but not least, 
most of the primary studies included in this systematic 
review investigated anterior- circulation sICAS, or mixed 
anterior- circulation and posterior- circulation lesions, 
while data were scarce for posterior- circulation sICAS 
separately.

CONCLUSIONS
This study systematically reviewed the methods and find-
ings of studies investigating the clinical relevance of 
haemodynamic parameters obtained with CFD models in 
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patients with sICAS. By simulating blood flow, the CFD 
technique is a promising tool in investigating the patho-
physiology of ICAS and in risk stratification of patients 
with sICAS. However, there are also limitations and chal-
lenges with the current CFD models. Standardisation of 
the modelling methods and validation of the simulation 
results in sICAS are needed, for wider applications of this 
technique in clinical research and practice.
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