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ABSTRACT
Background and purpose  Stroke is the second 
leading cause of death worldwide and the leading 
cause of mortality and long-term disability in China, 
but its underlying risk genes and pathways are far from 
being comprehensively understood. We here describe 
the design and methods of whole genome sequencing 
(WGS) for 10 914 patients with acute ischaemic stroke or 
transient ischaemic attack from the Third China National 
Stroke Registry (CNSR-III).
Methods  Baseline clinical characteristics of the 
included patients in this study were reported. DNA 
was extracted from white blood cells of participants. 
Libraries are constructed using qualified DNA, and WGS 
is conducted on BGISEQ-500 platform. The average 
depth is intended to be greater than 30× for each 
subject. Afterwards, Sentieon software is applied to 
process the sequencing data under the Genome Analysis 
Toolkit best practice guidance to call genotypes of single 
nucleotide variants (SNVs) and insertion-deletions. For 
each included subject, 21 fingerprint SNVs are genotyped 
by MassARRAY assays to verify that DNA sample and 
sequencing data originate from the same individual. The 
copy number variations and structural variations are also 
called for each patient. All of the genetic variants are 
annotated and predicted by bioinformatics software or by 
reviewing public databases.
Results  The average age of the included 10 914 
patients was 62.2±11.3 years, and 31.4% patients were 
women. Most of the baseline clinical characteristics of 
the 10 914 and the excluded patients were balanced.
Conclusions  The WGS data together with abundant 
clinical and imaging data of CNSR-III could provide 
opportunity to elucidate the molecular mechanisms and 
discover novel therapeutic targets for stroke.

INTRODUCTION
Stroke is the second leading cause of 
death worldwide, and the leading cause of 
mortality and long-term disability in China.1 

Being the most common type of stroke, 
ischaemic stroke (IS) accounts for about 
80% of all strokes,2 and more than 90% 
of IS are sporadic.3 IS is a complex multi-
factorial disease arising from complicated 
gene-environment interactions. Therefore, 
uncovering genetic contributions to IS could 
help to identify the genes, pathways and 
networks that are involved in IS pathogen-
esis. Although several novel genetic variants 
that were associated with IS susceptibility 
have been discovered in the last decades,4–9 
few studies explored the correlation between 
genetic variants and stroke outcomes. More-
over, previous genetic studies on IS were 
mainly conducted in European and African 
populations,4 10 and there is limited data 
for the Chinese population. Due to the 
substantial ancestral difference,11 whether 
these reported IS-associated genetic variants 
could also contribute to IS pathogenesis in 
Chinese population needs verification.

The Third China National Stroke Registry 
(CNSR-III) is a nationwide prospective registry 
with 15 166 patients with IS or transient isch-
aemic attack (TIA) in China.12 A broad and 
comprehensive spectrum of individual-level 
data had been collected, including clinical 
phenotypes, aetiological classification, neuro-
imaging, biomarkers and clinical outcomes. 
The aetiological subtyping information was 
recorded centrally. Taking these advantages, 
we perform whole genome sequencing 
(WGS) for 10 914 patients in the prespecified 
genetic substudy of CNSR-III to delineate the 
genetic landscape of IS and TIA in Chinese 
population.
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METHODS
Patients
The CNSR-III is a nationwide prospective registry for 
patients presented to hospitals with acute ischaemic cere-
brovascular events between August 2015 and March 2018 
in China.12 There is a total of 15 166 patients with IS (n=14 
146, 93.3%) or TIA (n=1020, 6.7%) within 7 days from the 
onset of symptoms to enrollment. The CNSR-III involved 
201 hospitals that cover 22 provinces and 4 municipali-
ties in China, including 163 grade III (central hospitals 
for certain district or city, usually teaching hospitals) 
and 38 grade II (hospitals serving several communities) 
urban hospitals. A total of 12 603 patients participated 
in the prespecified genetic substudy. The white blood 
cells (WBCs) from a total of 10 914 patients are applied 
in WGS (figure 1). The written informed consents were 
obtained from all patients or legally authorised represent-
atives before entering into the study.

DNA extraction
For each sample, WBCs was used to extract the genomic 
DNA, which was performed using Magnetic Blood 
Genomic DNA Kit (DP329, TIANGEN Biotech Co Ltd, 
Beijing, China) on KingFisher Flex (Thermo Scientific 
Co, Massachusetts, USA) system for automatic genomic 
DNA extraction and purification at iGeneTech Co Ltd. 
(Beijing, China) or by manual phenol–chloroform DNA 
extraction at BGI Genomics (BGI-Shenzhen).

Evaluation of DNA quality
The concentration of genomic DNA was quantified using 
Qubit 2.0 fluorometer (Thermo Scientific Co, Massa-
chusetts, USA) and SpectraMax Gemini XPS (Molec-
ular Devices, San Francisco, USA) at BGI Genomics 
(BGI-Shenzhen). Electrophoresis was conducted on 1% 
agarose gel to make sure that the majority of genomic 

DNA segments was longer than 20 Kb and was not substan-
tially degraded. Genomic DNA samples with concentra-
tion ≥12.5 ng/µL and total amount ≥0.5 µg was qualified 
for further procedures. For each of the qualified sample, 
the DNA is further applied in library construction and 
subsequent WGS process, as well as single nucleotide 
variant (SNV) genotyping (see details below).

Library construction
The qualified genomic DNA is randomly fragmented by 
ultrasound using CovarisLE220 (Covaris, Massachusetts, 
USA) according to the manufacturer’s instructions. The 
DNA fragments in the range of 200 to 400 bp are selected 
by VAHTSTM DNA Clean Beads (Vazyme Biotech Co, 
Ltd, Nanjing, China). The end repair for DNA fragments 
is performed by adding an ‘A’ nucleotide to the 3’ end 
of each strand. Afterwards, the dTTP-tailed adapters are 
ligated to both ends of the repaired/dA-tailed DNA frag-
ments. The ligation product is then amplified by PCR. 
Then the products are purified by VAHTSTM DNA 
Clean Beads (Vazyme Biotech Co, Ltd, Nanjing, China). 
The purified PCR products with total mass ≥200 ng, 
and the main peak in 300 to 500 bp should be applied. 
Single strand separation is conducted by heat-denaturing 
the PCR product at 95 °C. Circularisation process is 
performed by mixing the single-stranded DNA frag-
ments with splint oligos (sequence: ​GCCA​TGTC​GTTC​
TGTG​AGCCAAGG) and DNA Rapid Ligase to generate 
single-stranded DNA circles. The remaining linear mole-
cule is digested with the exonuclease. The enzymatic 
digestion products are purified by Agencourt AMPure 
XP medium (Beckman Coulter, Indiana, USA). The 
single-stranded circle DNA (ssCir DNA) are formatted as 
the final library. The purified enzymatic digestion prod-
ucts are quantified with Qubit ssDNA Assay Kit (Thermo 

Figure 1  Flow chart of patient selection for WGS in the prespecified genetic substudy of CNSR-III. CNSR-III, The Third China 
National Stroke Registry; IS, ischaemic stroke; TIA, transient ischaemic attack; WGS, whole genome sequencing.
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Scientific Co, Massachusetts, USA), and the final yield 
should be ≥12 ng.

BGISEQ-500 WGS sequencing
Rolling circle amplification is performed for the quali-
fied libraries to produce DNA Nanoballs (DNBs). Then 
the DNBs are loaded into the patterned nanoarrays and 
100 bp pair-end reads are sequenced on the BGISEQ-
500 platform (BGI Genomics, Shenzhen, China). 
Sequencing-derived raw image files are processed by 
BGISEQ-500 base-calling software (V.1.2.1.21840) under 
default parameters settings. The sequence data are stored 
in FASTQ format. The average depth for each subject is 
intended to be greater than 30×.

SNV genotyping
To make sure that the DNA samples are neither mistaken 
nor contaminated during the WGS process, we selected 
21 biallelic fingerprint SNVs and planned to geno-
type them for each participant of WGS. These 21 SNVs 
distribute on 15 different autosomes and are at least 13M 
apart. The minor allele frequencies of these SNVs are 
between 0.16 to 0.5 within the Han Chinese in Beijing 
samples in 1000 Genome Project.13 The SNV geno-
typing experiments are performed at BGI Genomics 
(BGI-Shenzhen) independently and simultaneously with 
WGS. For each sample, approximately 30 ng of qualified 
genomic DNA is used. Locus-specific PCR and detection 
primers are designed using the MassARRAY Assay Design 
software (Agena Bioscience, California, USA). Multiplex 
PCR and locus-specific single-nucleotide extension are 
performed for each DNA sample, then the products are 
desalted and transferred to a 384-well SpectroCHIP array. 
After MALDI-TOF (matrix-assisted laser desorption/
ionization-time of flight) mass spectrometry, MassArray 
Typer software (V.4.1, Agena Bioscience, California, USA) 
is used to call the genotype for each participant.

After the accomplishment of WGS and SNV geno-
typing, the genotypes of the 21 SNVs are compared 
between those that are respectively obtained from WGS 
data analyses and MALDI-TOF mass spectrometry to 
verify that DNA sample and sequencing data originates 
from the same individual.

WGS data cleanup
Raw sequence reads are filtered using an in-house pipe-
line for quality control. The following steps are executed 
consecutively: Removing both of the paired reads if (1) 
any one of the reads contain sequencing adapter, (2) any 
one of the reads whose low-quality base ratio (base quality 
less than or equal to 12) is more than 50%, (3) any one 
of the reads whose unknown base (‘N’ base) ratio is more 
than 10%. Afterwards, fastp (V.0.20.0) is applied to filter 
out low-quality reads and bases,14 and downstream bioin-
formatics analyses are conducted on these qualified data.

Mapping and variant calling
The paired-end reads are processed under the Genome 
Analysis Toolkit (GATK) best practice guidance using 

Sentieon (release 201808.05, https://www.​sentieon.​com, 
bioRxiv 115717; doi:10.1101/115717).15 The reads are 
aligned to the hg38 human reference genome sequence 
that is downloaded from GATK bundle (ftp://​gsapu-
bftp-​anonymous@​ftp.​broadinstitute.​org/​bundle/​hg38/​
Homo_​sapiens_​assembly38.​fasta.​gz) using Burrows-
Wheeler Alignment tool that is implemented in Sentieon. 
The SNVs and insertion-deletions (indels) in the regions 
of segmental duplications and unassigned chromosomes 
are ignored in the downstream analyses. For each sample, 
the base quality, sequencing depth, GC (guanine-cytosine) 
content, mapping rate, mismatch rate, duplication rate 
and coverage is calculated. After removing the duplicated 
reads and recalibrating the base quality scores, SNVs 
and indels are first called using Haplotyper of Sentieon 
for each individual and then jointly called for all of the 
participants. Then, variant quality score recalibration 
and hard filter methods are applied to obtain the high-
quality variant calls for SNVs and indels. The ‘*.bam’ and 
‘*.vcf’ files that are generated in the above procedures 
would be reserved for other researches. Copy number 
variations (CNVs) and structural variations (SVs) in the 
genome of patients are mainly called using GraphTyper2 
and Manta.16 17

Population genetics analysis
To minimise problems arising from hidden family and 
population structure in the participants, we conduct the 
following quality control steps. First, kinship is explored 
by calculating pairwise identity-by-descent calculations 
for all pairs of individuals using PLINK (V.1.9).18 The 
existence of first and second degree relationships is 
checked using KING (V.2.1.8).19 Second, population 
structure is investigated using STRUCTURE software 
and by conducting principal component analysis.20 All of 
these analyses are conducted using autosomal SNVs and 
indels.

Variant annotation
Impact of the mutations on protein coding and protein 
truncating variants were predicted using variant effect 
predictor.21 Pathogenicity of SNVs and indels are eval-
uated using InterVar software (V.2.0.1) under guide-
lines of the American College of Medical Genetics 
and Genomics and the Association for Molecular 
Pathology.22 The potential impact of SNVs and indels on 
gene expression/regulation is investigated by reviewing 
GTEx, HaploReg and other databases or online 
tools.23 24 The impact of intronic and exonic mutations 
on pre-messenger RNA splicing is mainly predicted 
using SpliceAI.25

Biological significance of known or common CNVs and 
SVs are annotated by reviewing dbVar and Database of 
Genomic Variants.26 27 Novel CNVs and SVs are annotated 
by reviewing literatures on structure and function studies 
of the genes affected by the corresponding CNVs and SVs 
from PubMed.
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Checking and reviewing
During the experimental procedures of this project, all of 
the WBCs and DNA loading, packaging, transferring and 
storing operations was conducted by one technician while 
being checked and supervised by another technician.

For WGS and SNV genotyping data, the MD5 code 
is generated for each data file before transfer, and is 
checked after the transfer. The commands and codes for 
WGS data mapping and variant calling are written by one 
bioinformatician while being reviewed by another bioin-
formatician. The log files are also reviewed and reserved.

All of the genetic information, clinical data and biospe-
cimens are managed following the Regulations of the 
People’s Republic of China on Administration of Human 
Genetic Resources 2019.

Research projects
WGS data of 10K patients will be incorporated to identify 
the causality of certain risk factors for stroke outcomes, 
to investigate pleiotropic effect of genes on multiple 
phenotypes, and to understand the genetic relationship 
between particular comorbidities and IS. The accurate 
sequencing data from greater than 30× average depth 
in the WGS study also allows us to obtain a panoramic 
view of individual-specific variation and genetic structure 

of Chinese patients with IS or TIA. Some prespecified 
research topics are described below:

►► To draw a comprehensive genetic landscape of 
Chinese patients with IS or TIA, and characterise the 
geographical, lifestyle differences and their demo-
graphic origin;

►► To evaluate the genetic contribution to IS and its 
recurrent outcomes, especially the contribution of 
rare variants, CNVs and variants in certain region of 
the genome (eg, telomere and mitochondrial DNA);

►► To determine the causality of serum biomarkers for IS 
outcomes using association analyses and Mendelian 
randomisation;

►► To investigate the relationship between genetic 
features and brain imaging changes in IS;

►► To conduct the pharmacogenomics analyses on 
certain secondary prevention of IS;

►► To better understand the genetic mechanisms of IS 
with particular comorbidities (eg, chronic kidney 
disease, diabetes mellitus and hypertension).

RESULTS
Among the 15 166 patients with IS or TIA in CNSR-III, 
12 603 patients participated in the prespecified genetic 

Figure 2  Workflow of WGS and bioinformatics analyses. The first two rows shows the process of DNA extraction, quality 
control, library construction and WGS. The third row demonstrates downstream bioinformatics analyses of WGS data. Some 
of the images are retrieved or adapted from Servier Medical Art (https://smart.servier.com/), which is licensed under a Creative 
Commons Attribution 3.0 Unported License. The photos of instruments are downloaded from websites of BGI Genomics 
(https://www.bgi.com/), Thermo Fisher (https://www.thermofisher.com/) and Agena Bioscience (https://agenabio.com/), 
respectively. DNB,DNA Nanoball; IS, ischaemic stroke; ssCir DNA, single-stranded circle DNA; TIA, transient ischaemic attack; 
WGS, whole genome sequencing.
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substudy. Among them, 1308 participants did not provide 
enough WBCs. After DNA extraction and quality eval-
uation, the DNA of 381 participants was insufficient or 
unqualified. Therefore, a total of 1689 participants were 
excluded and WGS are conducted for 10 914 participants 
of CNSR-III (figure 1). The workflow of WGS and down-
stream bioinformatics analyses are shown in figure 2.

Baseline clinical characteristics of the included 10 914 
patients and excluded patients were presented in table  1. 
The average age was 62.2±11.3 years, and 31.4% of the 
patients were women. Patients diagnosed to be IS were 10 
166 (93.2%), among which 50.4% had minor stroke (NIHSS 
(National Institutes of Health Stroke Scale score) ≤3). A total 
of 31.8% of the included patients were current smokers, and 
14.5% were heavy drinkers (defined as ≥2 standard alcohol 
consumption per day). A total of 21.3% of the included 
patients had a history of IS. A total of 10.8%, 7.0% and 62.8% 
of the included patients had a history of coronary heart 
disease, atrial fibrillation and hypertension, respectively. The 
two groups of included and excluded patients were balanced 
regarding baseline characteristics (table 1).

DISCUSSION
Stroke is a complex disease that has multiple aetiolo-
gies. Genetic and genomic studies among populations 
from diverse ancestry could refine our understanding on 

molecular mechanism of stroke. Therefore, we conduct WGS 
for 10 914 patients from CNSR-III. The WGS procedures and 
baseline characteristics of patients are reported in this study. 
The WGS of CNSR-III constructs a genomic data set that 
facilitate large scale IS genetic analyses in Chinese popula-
tion. The CNSR-III collected a comprehensive spectrum of 
phenotypic information under consistent and standardised 
criteria, which could increase the power and credibility of the 
genetic analyses. In addition, all of the patients are followed 
up for clinical outcomes,12 and this provides an opportu-
nity for discovery of genetic variants that are associated with 
patients’ outcomes after stroke.

In contrast to DNA microarrays that were mainly used 
in previous genetic associations on IS,4 10WGS technology 
applied in this study could provide nearly all of the SNVs 
and indels, and simultaneously capture genetic information 
on CNVs and SVs for each patient. Therefore, WGS enables 
a systematic evaluation of the genetic effect of rare variants 
(allele frequencies <1% in population) to IS and TIA. As 
the contribution of the rare variants remains one of the top 
challenges in stroke genetics, the WGS study would provide 
a better understanding on IS and TIA pathophysiology.10 
The average depth for WGS is intended to be greater than 
30× in this project, because at this depth, both accurate 
variant calling and cost-effectiveness could be achieved.28 29 
Moreover, >95% the genome could be covered by at least 10 

Table 1  Baseline characteristics of the included patients in the patients who underwent whole genome sequencing and the 
rest of the patients in CNSR-III

Characteristics
Included
(n=10 914 to 72.0%)

Excluded
(n=4252 to 28.0%)

Total
(n=15 166 to 100%)

Age (years), mean±SD 62.2±11.3 62.2±11.3 62.2±11.3

Female, n (%) 3429 (31.4) 1373 (32.3) 4802 (31.7)

Ethnicity (non-Han), n (%) 306 (2.8) 134 (3.2) 440 (2.9)

Stroke type

 � IS 10 166 (93.2) 3980 (93.6) 14 146 (93.3)

 � TIA 748 (6.8) 272 (6.4) 1020 (6.7)

Current smoker, n (%) 3472 (31.8) 1280 (30.1) 4752 (31.3)

Heavy drinker, n (%)* 1582 (14.5) 544 (12.8) 2126 (14.0)

Medical history, n (%)

 � Ischaemic stroke 2322 (21.3) 827 (19.4) 3149 (20.8)

 � Coronary heart disease 1179 (10.8) 429 (10.1) 1608 (10.6)

 � Atrial fibrillation 765 (7.0) 254 (6.0) 1019 (6.7)

 � Hypertension 6858 (62.8) 2636 (62.0) 9494 (62.6)

 � Diabetes mellitus 2609 (23.9) 901 (21.2) 3510 (23.1)

 � Hypercholesterolaemia 903 (8.3) 288 (6.8) 1191 (7.9)

NIHSS at admission, median (IQR)† 3.0 (1.0 to 6.0) 3.0 (1.0 to 5.0) 3.0 (1.0 to 6.0)

NIHSS 0–3 5120 (50.4) 2199 (55.2) 7319 (51.7)

NIHSS ≥4 5046 (49.6) 1781 (44.8) 6827 (48.3)

*Heavy drinker was defined as ≥2 standard alcohol consumption per day.
†NIHSS in this table were summarised among IS patients only.
CNSR-III, the Third China National Stroke Registry; IS, ischaemic stroke; NIHSS, National Institutes of Health Stroke Scale score; TIA, 
transient ischaemic attack.
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sequencing reads, and >95% of the heterozygous variation 
could be accurately identified under this design.30 Therefore, 
the WGS could provide high-quality genetic data for further 
investigations on IS.

In conclusion, the WGS and genome-wide analyses on 
CNSR-III would help to refine our understanding on the 
genetic contribution to IS/TIA and stroke outcomes, and 
possibly discover novel therapeutic targets for secondary 
prevention.
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